|ntroduction to VHD|

Drepared iny: Eng. Waleed Saad

- VHDL is a language for describing digital hardware used by industry worldwide
-VHDL is an acronym for VHSIC (Very High Speed Integrated Circuit) Hardware
Description Language

Features of VHDL

- Technology/vendor independent
- Portable
- Reusable

Three versions of VHDL

VHDL-87•
VHDL-93 •
VHDL-01•

Design Entity

Design Entity - most basic building block of a design.

One entity can have many different architectures.

Entity Declaration

- Entity Declaration describes the interface of the component, i.e. input and output ports.

Entity declaration - simplified syntax

ENTITY entity_name IS PORT (port_name: signal_mode signal_type; port_name : signal_mode signal_type;
port_name : signal_mode signal_type);
END entity_name;

Architecture

- Describes an implementation of a design entity.
- Architecture example:

```
ARCHITECTURE model OF nand_gate IS
BEGIN
    z <= a NAND b;
END model;
```


Architecture - simplified syntax

ARCHITECTURE architecture_name OF entity_name IS
[declarations]
BEGIN
code
END architecture_name;

VHDL Design Styles

Component and Instantiation (1)

- Named association connectivity (recommended)

```
component XOR2 is
    port(
        I1 : in STD_LOGIC;
    I2 : in STD_LOGIC;
    Y : out STD_LOGIC
        );
end component;
U1: XOR2 port map (11 => A,
    I2 => B,
    Y => U1_OUT);
```


Component and Instantiation (2)

- Positional association connectivity (not recommended)

Optimal results:

OpSel		Function
00		$\mathrm{~A}+\mathrm{B}$
01		$\mathrm{C}+\mathrm{D}$
10		$\mathrm{E}+\mathrm{F}$
11		$\mathrm{G}+\mathrm{H}$

Port Mode

- In : data flows in this port and can only be read (this is the default mode)
- Out
:data flows out this port and can only be written to
- Buffer : similar to Out, but it allows for internal feedback
- Inout
: data flow can be in either direction with any number of sources allowed
- Linkage : data flow direction is unknown

Modes and their signal sources

Mode out

Entity

Driver resides inside the entity

Mode out with signal

Mode buffer

Entity

Driver resides

$$
c<=z
$$

inside the entity

Data Types

Data Type	Values	Example
Bit	'1','0'	$\mathrm{Q}<=‘ 1 ' ;$
Bit_vector	(array of bits)	DataOut<="00010101';
Boolean	True, False	EQ<=True;
Integer	$-2,-1,0,1,2,3,4 . .$.	Count <= Count + 2;
Real	$1.0,-1.0 \mathrm{E} 5$	$\mathrm{~V} 1=\mathrm{V} 2 / 5.3$
Time	1 ua, $7 \mathrm{~ns}, 100$ ps	$\mathrm{Q}<=\mathrm{T}$ after 6ns;
Character	'a', 'b', '2, '\$', etc.	CharData <= 'X';
String	(Array of characters)	Msg<="MEM:"\&Addr

Signals

SIGNAL a: STD_LOGIC;

SIGNAL b : STD_LOGIC_VECTOR(7 DOWNTO 0);

Common VHDL Types

TYPE	Value	Origin
std_ulogic	'U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-'	std logic 1164
std_ulogic_vector	array of std_ulogic	std_logic_1164
std logic	resolved std_ulogic	std_logic_1164
std logic vector	array of std_logic	std_logic_1164
unsigned	array of std_logic	numeric std,
		std logic arith
signed	array of std_logic	numeric_std, std_logic_arith
boolean	true, false	standard
character	191 / 256 characters	standard
string	array of character	standard
integer	-($2^{31}-1$) to ($2^{31}-1$)	standard
real	-1.0E38 to 1.0E38	standard
time	1 fs to 1 hr	standard

Only one driver!

std_logic

One or more drivers

Standard Logic Vectors

```
SIGNAL a: STD_LOGIC;
SIGNAL b: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL c: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL d: STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL e: STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL f: STD_LOGIC_VECTOR(8 DOWNTO 0);
a <= '1';
b <= "0000"; -- Binary base assumed by default
c <= B"0000"; -- Binary base explicitly specified
d <= "0110_0111"; -- You can use ',' to increase readability
e <= X"AF67"; -- Hexadecimal base
f <= O"723"; -- Octal base
```


Vectors and Concatenation

```
SIGNAL a: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL b: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL c, d, e: STD_LOGIC_VECTOR(7 DOWNTO 0);
a <= "0000";
b <= "1111";
c <= a & b; -- c = "00001111"
d <= '0' & "0001111"; -- d <= "000001111"
e <= '0' & '0' & '0' & '0' & '1' & '1' &
    '1' & '1';
    -- e <= "00001111"
```


Size and type of target

Operation
Y <= "10101010" ;
Y <= X"AA" ;
$\mathrm{Y}<=\mathrm{A}$;
$Y<=A$ and B;
$\mathrm{W}<=\mathrm{A}>\mathrm{B}$;
$Y<=A+B ;$
$\mathrm{Y}<=\mathrm{A}+10$;
V <= A*B;

Slze of $Y=$ Slze of Expression
number of digits in literal
4 * (number of digits)
A'Length = Length of array A
A'Length $=B^{\prime}$ Length
Boolean
Maximum (A'Length, B'Length)
A'Length
A'Length + B'Length

Packages operators

Data types conversions

Type conversions between std_logic_vector and numeric data types

Data type of a	To data type	Conversion function/type casting
unsigned, signed	atd logic-vector	std logic-vector (a)
signed, std logic-vector	unsigned	unsigned (a)
unsigned, std_logic_vectox	signed	signed(a)
unsigned, signed	integer	to_integer (a)
natural	unsigned	to_unsigned(e, size)
integer	signed	to_signed(a, size)

library teee;
use ieee.std_logic_1164.all;
use ieee. numeric_std.all;
signal si, s2, s3, s4, s5, s6: std_logic_vector (3 downto o) ;
signal u1, u2, u3, u4, u5, u6, u7: unsigned (3 downto 0);

$\mathrm{u} 4<=\mathrm{u} 2+\mathrm{u} 1 ;-o k$,
u5 《 $\mathbf{4} 2+1 ; \quad-\quad$ ok.
$85<=32+81 ;=$ not ok
85 < std_loghtorector (unsigned (82) + unsigned (81$)$); - ok
$\mathrm{s} 6 \ll \mathrm{~s} 2+1$ - not ok,
s6 < etd logiovector (unsigned $(82)+1)$;
-- ok

Packages for Numeric Operations

Unsigned and Signed Types

- Used to represent numeric values:

TYPE	$\frac{\text { Value }}{0}$	Notes
unsigned	to $2^{N}-1$	2's Complement number
signed	$-2^{(N-1)}$ to $2^{(N-1)}-1$	2

- Usage similar to std_logic_vector:

```
signal A_unsigned : unsigned(3 downto 0) ;
signal B_signed : signed (3 downto 0) ;
signal c_slv : std_logic_vector (3 downto 0) ;
A_unsigned <= "1111" ;
```



```
B_signed <= "1111" ;
C_slv
    <= "1111" ;
```


Overloading Examples

```
Signal A_uv, B_uv, C_uv, D_uv, E_uv : unsigned(7 downto 0) ;
Signal R_sv, S_sv, T_sv, U_sv, V_sv : signed(7 downto 0) ;
Signal J_slv, K_slv, L_slv : std_logic_vector(7 downto 0) ;
signal Y_sv : signed(8 downto 0) ;
-- Permitted
A_uv <= B_uv + C_uv ; -- Unsigned + Unsigned = Unsigned
D_uv <= B_uv + 1 ; -- Unsigned + Integer = Unsigned
E_uv <= 1 + C_uv; -- Integer + Unsigned = Unsigned
R_sv <= S_sv + T_sv ; -- Signed + Signed = signed
U_sv <= S_sv + 1 ; -- Signed + Integer = Signed
V_sv <= 1 + T_sv; -- Integer + Signed = Signed
J_slv <= K_slv + L_slv ; -- if using std_logic_unsigned
-- Illegal Cannot mix different array types
-- Solution persented later in type conversions
-- Y_sv <= A_uv - B_uv ; -- want signed result
```


Conventions

Naming and Labeling (1)

- VHDL is not case sensitive

Example:

Names or labels
databus
Databus
DataBus
DATABUS
are all equivalent

Naming and Labeling (2)

General rules of thumb (according to VHDL-87)

1. All names should start with an alphabet character (a-z or A-Z)
2. Use only alphabet characters (a-z or A-Z) digits (0-9) and underscore (\quad)
3. Do not use any punctuation or reserved characters within a name (!, ?, ., \& , +, -, etc.)
4. Do not use two or more consecutive underscore characters (_) within a name (e.g., Sel__A is invalid)
5. All names and labels in a given entity and architecture must be unique

Free Format

- VHDL is a "free format" language

No formatting conventions, such as spacing or indentation imposed by VHDL compilers. Space and carriage return treated the same way.
Example:

```
    if (a=b) then
or
    if (a=b) then
or
    if (a =
    b) then
are all equivalent
```


Comments

- Comments in VHDL are indicated with a "double dash", i.e., "--"
- Comment indicator can be placed anywhere in the line
- Any text that follows in the same line is treated as a comment
- Carriage return terminates a comment
- No method for commenting a block extending over a couple of lines
Examples:
-- main subcircuit
Data_in <= Data_bus; -- reading data from the input FIFO

VHDL FAQ

What is the difference between VHDL and Verilog?
Can I use VHDL for the analog part of a design?
How must I write VHDL to make it synthesizable?
How many versions of VHDL are there?
Are there any tools to generate VHDL test benches automatically?
Are there translators from 'C' to VHDL?
I've heard that VHDL is very inefficient for FPGAs. Is that true?
Are freeware / shareware VHDL tools available?

