Introduction to VHI|

Prepared hY:
Eng. Waleed Sagy

 VHDL is a language for describing digital
hardware used by industry worldwide

—VHDL is an acronym for VHSIC (Very High
Speed Integrated Circuit) Hardware
Description Language

Features of VHDL

 Technology/vendor independent
* Portable

e Reusable

Three versions of VHDL

VHDL-87
VHDL-93 -
VHDL-01 -

Design Entity

design entity

entity declaration

architecture 1

Design Entity - most basic
building block of a design.

One entity can have
many different architectures.

Entity Declaration

 Entity Declaration describes the interface of the
component, i.e. input and output ports.

Entity name

Port names Port

type
Semicolon

a : IN STD_LOGIC;

b - IN STD LOGIC;

z : OUT STD_LOGIC
)-

/€ND nand_gate;

ENTITY nand_gaté 1S /
PORT(/

L

/

|__— No Semicolon

Reserved words \

Port modes (data flow directions)

Entity declaration — simplified
syntax

ENTITY entity_name IS
PORT (
port_ name : signal_mode signal type;
port_ name : signal_mode signal type;
port_ name : signal mode signal type);
END entity _name,;

Architecture

* Describes an implementation of a design
entity.
o Architecture example:

ARCHITECTURE model OF nand gate IS
BEGIN

Z <= a NAND b;
END model;

Architecture — simplified syntax

ARCHITECTURE architecture_name OF entity _name IS
[declarations |

BEGIN
code

END architecture _name;

VHDL Design Styles

VHDL Des1gn

Styles
dataflow structural behavioral
Concurrent Components and Sequential statements
statements Interconnects . Reg’isters

« State machines
+Test benches

Subset most suitable for synthesis

Component and Instantiation (1)

« Named association connectivity
(recommended)

component XOR2 is
port(
11 :in STD_LOGIC;
12 :in STD_LOGIC,;
Y :out STD _LOGIC
);

end component;

Ul: XOR2 port map (11 => A,
12 => B,
Y =>Ul _OUT);

Component and Instantiation (2)

e Positional association connectivity
(not recommended)

component XOR2 is
port(

:in STD_LOGIC;
12 Nn STD _LOGIC,;

end component;

U1l: XOR2 port map (A, B, U1_OUT);

T oM moQm2>E

Optimal results:

OpSel Function
00 A+B
01 C+D
10 E+F
11 G+H
A —io
C —qi
E —i2
o —i3
sel
OpSel a
B —iD
D —qi1
F =iz
H =-—i3
sel
_

IN

Out

Buffer

Inout

Linkage

Port Mode

. data flows in this port and can only be
read (this is the default mode)

:data flows out this port and can only be
written to

: similar to Out, but it allows for internal
feedback

: data flow can be In either direction with
any number of sources allowed

. data flow direction is unknown

Modes and their signal sources

Mode Made
ml @ D -

) E Gultr
.n O -

In

] o

Mode out

Entity

Port signal

Y

A | Can’t read out
within an entity

Driver resides
inside the entity C

Mode out with signal

Entity
Port signal
] X 7
A J{
C Signal Int can be
i read inside the entity
Driver resides 7 <=X

inside the entity
C<=X

Mode buffer

Entity
Port signal
o
] Z
A
C) |
; Port signal Z can be
' read inside the entity
Driver resides C<=7

inside the entity

Data Types

Data Type Values Example

Bit ‘1,0’ Q<="1%

Bit_vector (array of bits) DataOut<="00010101"
Boolean True, False EQ<=True;

Integer -2,-1,0,1,2,3/4. .. Count <= Count + 2;
Real 1.0, -1.0E5 V1=Vv2/5.3

Time 1 ua, 7 ns, 100 ps Q<=T after 6ns;
Character ‘a', 'b', '2,'$, etc. CharData <= "X,

String

(Array of characters)

Msg<="MEM:"&Addr

Signals

SIGNAL a: STD_LOGIC;

a

/
/

1 wire

SIGNAL b : STD_LOGIC_VECTOR(7 DOWNTO 0);

Common VHDL Types

TYPE
std_ulogic
std_ulogic_vector
std logic

std logic_vector

unsigned

signed

boolean
character
string
integer
real

time

Value

.U“ IXI’ ID', l.1l! IIZI:| lWl! ll_l:| IH!lI I_I

array of std_ulogic
resolved std_ulogic
array of std_logic

array of std_logic

array of std_logic

true, false

191 / 256 characters
array of character
-(237-1)to (237 - 1)
-1.0E38 to 1.0E38
1fsto1hr

Qrigin

std logic 1164
std_logic_1164
std_logic_1164
std_logic_1164

numeric std,

std loqgic_arith
numeric_std,

std_logic_arith

standard
standard
standard
standard
standard
standard

Unresoked

%

std ulogic

Only one driver!

std logic

associated
— resolution

function
_>\

One or more drivers

signal A, B, Z :
zignal RES Z :

std nlogic;
ztd logilc;

s

g == A
4 <= B; x

A0NRES 2 ?

RES Z <= A;
RES Z <= B;

Standard Logic Vectors

SIGNAL a: STD_LOGIC;

SIGNAL b: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL c: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL d: STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL e: STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL f: STD_LOGIC_VECTOR(8 DOWNTO 0);

a<="'1",

b <="00007; -- Binary base assumed by default

c <= B”0000"; -- Binary base explicitly specified

d <="0110 0111"; -- You can use ‘ 'to increase readability
e <= X"AF67"; -- Hexadecimal base

f<=0"723" -- Octal base

Vectors and Concatenation

SIGNAL a: STD_LOGIC_VECTOR(3 DOWNTO 0O);
SIGNAL b: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL c, d, e: STD_LOGIC_VECTOR(7 DOWNTO O);

a <= ’00007;

b <= ”1111;

C <= a & b; -—- Cc = 700001111~
d <= “0” & ’0001111”’; -- d <= ’00001111~

e <= “0” & “0” & “0” & “0” & 17 & “17 &
(17 & (11;
-- e <= 700001111~

Size and type of target

Operation Size of Y = Slze of Expression
Y <= "10101010" ; number of digits in literal

Y <= X"AA" ; 4 * (number of digits)
Y<=14; A'Length = Length of array A
Y <=AAand B ; A'Length = B'Length
We=A5>B; Boolean

Y<=A+8B; Maximum (A'Length, B'Length)
Y<=24+ 10 ; A'Length

Ve=A*B; A'Length + B'Length

Packages operators

FEE std_lTogic 11&3hackaoe

CDperators and data iypes of VHIDL -93 and

Operator Descriptiom Datas Ty e Idata EwEee
of operands of reswult

a =+ I exponentiaticmn integesr Imteger

s = I rmualriplicatioemn

a S b diwvisicm imteger rome forr CoRSianrs el

=+ B audclitior CE PPV PP eri el cT e S, MR SRR LeE s i

& = = subtracriiaon

a & b COOMCASTIAarion 1-T array, 1-I array
element

a = b eqieaml o Ay boolaean

a S= = not egual oo

a2 < b less tham scalar or 1-I2 array ool ean

a <= b less tham or egqual 1o

a > o greater than

a = i ereater thhan or egual Lo

ot =& e At i oy booclean. std_logic, Sarme as operand

a and b arncl std Jlogic_wector

& or B (i

a xNar b MACRE

Overloaded operators and data types in the

O verloaded Description Data type Data type
operator of operands of result
a = b arithmetic unsigned. natural unsigned
a + b operation signed, integer signed

a2 = b

a = b

a /= b

a < b relatvonal unsigned, natural boolean
a <= b operation signed, integer booclean
a > b

a »>= b

Data types conversions

Type conversions berween std_logic_.vector and numeric data types

IData type of a To data tyvpe Conversion function/type casting
unsigned, signed std_logic.vector std Jogic _vector{al

signed. std _logic vector unsigred unsigned(al

unsigned. std_logic_wvector signed signedal

ansigned, eigoned integer to.intaegarial

natural unesigneaed to unsigned(r, si=zel
integer signed to_signedda, siz=e)

library iese;
use ieee.std_logic_1164. all;
use ieee.numeric_std.all;

<signal =1, s2, =3, =84, 85, 86: std_legic_vector{(3 downto 0);
signmal w1, w2, u3d, u4d, ub, ué, u7: unsigned (3 downto O);

ul <= sl; — not ok ul <= unsigned(si};

u2 <= b; -— not ok u? <= to_unsigned(5,4);

82 <= u3; -— not ok 82 <= std_logic_vector(ud);

s3 <= 5; —— not ok 83 <= std_logic_vector(to_unsigned(h,4));
|
4 <= u?2 + ul; — ok,

ub <= w2 + 1; — ok,

8 <= g + gl == not ok, 55 ¢= gtd_logic_vector (unaigned(s2) + unsigned(si)); — ok

36 <= 82 + 1; — not ok, s6 <= std,logic_vector (unsigned(s2) + 1); — ok

Packages for Numeric Operations

Use numeric_std for new designs

library ieee ;

use leee.std logic 1llé4.all ; I

use ieee [numeric_std] all ; 4 Use numeric_std or
std_logic_arith, but

never both
e Using Synopsys Std_Logic_Arith /

library ieee ;
use leee.std logic 1lé4.all ;

use ieee[std_lcgic_arith]all ;

use leee.std logic unsigned.all ;

Unsigned and Signed Types

e Used to represent numeric values:

TYPE Value Notes
unsigned 0to2N-1
signed - 2(N-1) o 2(N-1) - 1 2's Complement number

e Usage similar to std_logic_vector:

1]

signal A unsigned : unsigned (3 downto 0)
signal B signed : 8lgned (3 downto 0) ;
slgnal C slv std logic vector (3 downto 0) ;

(1]

A unsigned <= "1111" <—— =15 decimal [

bl

B signed <= "1111" <——— =-1 decimal |

bl

C slv <= "1111"

|

std_logic_unsigned

= 15 decimal only if using ‘

Overloading Examples

Signal A uv, B uv, C uv, D uv, E uv
Signal R sv, 8 sv, T sv, U sv, V sv

Signal J slv, K slv, L slv
signal Y sv

-- Permitted

A uv <= B uv + C uv ;
Duv <= B uv + 1 ;

E uv <= 1 + C uv;

R sv <= S sv + T 8V ;
U sv <=8 8V + 1 ;
V sv <=1 + T sV;

J 8lv <= K 8lv + L slv ;

unsigned (7 downto 0) ;
signed (7 downto 0) ;

std loglc vector(7 downto 0)

slgned (8 downto 0)

-- Unsigned +

-- Unsigned +
-- Integer +
-- Signed +
-- Signed +

-- Integer +

Unsigned
Integer
Unsigned

Signed
Integer
Signed

Unsigned
Unsigned
Unsigned

Signed
Signed
Signed

-- 1f using std logic unsigned

-- Illegal Cannot mix different array types
-- Solution persented later in type conversions
-- want signed result

-- ¥ sv <= A uv - B uv ;

Naming and Labeling (1)

« VHDL Is not case sensitive

Example:

Names or labels
databus
Databus
DataBus
DATABUS

are all equivalent

Naming and Labeling (2)

General rules of thumb (according to VHDL-87)

1. All names should start with an alphabet character (a-z
or A-Z)

2. Use only alphabet characters (a-z or A-Z) digits (0-9)
and underscore ()

3. Do not use any punctuation or reserved characters
within a name (!, ?, ., &, +, -, etc.)

4. Do not use two or more consecutive underscore
characters (__) within a name (e.g., Sel __Ais invalid)

5. All names and labels in a given entity and architecture
must be unique

Free Format

« VHDL is a “free format” language

No formatting conventions, such as spacing or
Indentation imposed by VHDL compilers. Space

and carriage return treated the same way.
Example:
1T (a=b) then
or
1T (a=b) then
or
if (a =
b) then
are all equivalent

Comments

e Comments in VHDL are indicated with

a “double dash’, i.e., “--"
= Comment indicator can be placed anywhere in the
line
= Any text that follows in the same line is treated as
a comment
= Carriage return terminates a comment

* No method for commenting a block extending over
a couple of lines

Examples:
-- main subcircuit
Data_in <= Data_bus; -- reading data from the input FIFO

VHDL FAQ

What is the difference between VHDL and Verilog?
Can | use VHDL for the analog part of a design?
How must | write VHDL to make it synthesizable?

How many versions of VHDL are there?
Are there any tools to generate VHDL test benches automatically?

Are there translators from 'C' to VHDL?
I've heard that VHDL is very inefficient for FPGAs. Is that true?

Are freeware / shareware VHDL tools available?

