

• VHDL is a language for describing digital
hardware used by industry worldwide

–VHDL is an acronym for VHSIC (Very High
Speed Integrated Circuit) Hardware
Description Language

• Technology/vendor independent

• Portable

• Reusable

Features of VHDL

Three versions of VHDL

•VHDL-87

•VHDL-93

•VHDL-01

Design Entity

Design Entity - most basic
building block of a design.

One entity can have
many different architectures.

entity declaration

architecture 1

architecture 2

architecture 3

design entity

Entity Declaration
• Entity Declaration describes the interface of the
component, i.e. input and output ports.

ENTITY nand_gate IS
PORT(

a : IN STD_LOGIC;
b : IN STD_LOGIC;
z : OUT STD_LOGIC

);
END nand_gate;

Reserved words

Entity name Port names Port type
Semicolon

No Semicolon

Port modes (data flow directions)

Entity declaration – simplified
syntax

ENTITY entity_name IS
PORT (

port_name : signal_mode signal_type;
port_name : signal_mode signal_type;
………….
port_name : signal_mode signal_type);

END entity_name;

Architecture

• Describes an implementation of a design
entity.

• Architecture example:

ARCHITECTURE model OF nand_gate IS
BEGIN

z <= a NAND b;
END model;

Architecture – simplified syntax

ARCHITECTURE architecture_name OF entity_name IS
[declarations]

BEGIN
code

END architecture_name;

VHDL Design Styles

Components and
interconnects

structural

VHDL Design
Styles

dataflow

Concurrent
statements

behavioral

• Registers
• State machines
• Test benches

Sequential statements

Subset most suitable for synthesis

Component and Instantiation (1)

• Named association connectivity
(recommended)

component XOR2 is
port(

I1 : in STD_LOGIC;
I2 : in STD_LOGIC;
Y : out STD_LOGIC
);

end component;

U1: XOR2 port map (I1 => A,
I2 => B,
Y => U1_OUT);

component XOR2 is
port(

I1 : in STD_LOGIC;
I2 : in STD_LOGIC;
Y : out STD_LOGIC
);

end component;

U1: XOR2 port map (A, B, U1_OUT);

Component and Instantiation (2)

• Positional association connectivity
(not recommended)

Port Mode
• In : data flows in this port and can only be

read (this is the default mode)

• Out :data flows out this port and can only be
written to

• Buffer : similar to Out, but it allows for internal
feedback

• Inout : data flow can be in either direction with
any number of sources allowed

• Linkage : data flow direction is unknown

Modes and their signal sources

Mode out

Entity

Port signal

Driver resides
inside the entity

Can’t read out
within an entity

z

c <= z

c

Mode out with signal

Port signal

Entity

Driver resides
inside the entity

Signal Int can be
read inside the entity

x

c

z

z <= x
c <= x

Mode buffer

Entity

Port signal

Driver resides
inside the entity

Port signal Z can be
read inside the entity

c

z

c <= z

Data Types
Data Type Values Example

Bit ‘1’,'0' Q<=‘1’;

Bit_vector (array of bits) DataOut<="00010101";

Boolean True, False EQ<=True;

Integer -2, -1,0, 1,2, 3,4. .. Count <= Count + 2;

Real 1.0, -1.0E5 V1 =V2/5.3

Time 1 ua, 7 ns, 100 ps Q<=T after 6ns;

Character 'a', 'b', '2, '$', etc. CharData <= 'X';

String (Array of characters) Msg<="MEM:"&Addr

Signals

SIGNAL a : STD_LOGIC;

SIGNAL b : STD_LOGIC_VECTOR(7 DOWNTO 0);

wire

a

bus

b

1

8

Standard Logic Vectors
SIGNAL a: STD_LOGIC;
SIGNAL b: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL c: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL d: STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL e: STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL f: STD_LOGIC_VECTOR(8 DOWNTO 0);

……….
a <= ‘1’;
b <= ”0000”; -- Binary base assumed by default
c <= B”0000”; -- Binary base explicitly specified
d <= ”0110_0111”; -- You can use ‘_’ to increase readability
e <= X”AF67”; -- Hexadecimal base
f <= O”723”; -- Octal base

Vectors and Concatenation

SIGNAL a: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL b: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL c, d, e: STD_LOGIC_VECTOR(7 DOWNTO 0);

a <= ”0000”;
b <= ”1111”;
c <= a & b; -- c = ”00001111”

d <= ‘0’ & ”0001111”; -- d <= ”00001111”

e <= ‘0’ & ‘0’ & ‘0’ & ‘0’ & ‘1’ & ‘1’ &
‘1’ & ‘1’;

-- e <= ”00001111”

Packages operators

Data types conversions

Conventions

Naming and Labeling (1)

• VHDL is not case sensitive
Example:

Names or labels
databus
Databus
DataBus
DATABUS

are all equivalent

Naming and Labeling (2)

General rules of thumb (according to VHDL-87)

1. All names should start with an alphabet character (a-z
or A-Z)

2. Use only alphabet characters (a-z or A-Z) digits (0-9)
and underscore (_)

3. Do not use any punctuation or reserved characters
within a name (!, ?, ., &, +, -, etc.)

4. Do not use two or more consecutive underscore
characters (__) within a name (e.g., Sel__A is invalid)

5. All names and labels in a given entity and architecture
must be unique

Free Format

• VHDL is a “free format” language
No formatting conventions, such as spacing or

indentation imposed by VHDL compilers. Space
and carriage return treated the same way.
Example:

if (a=b) then

or
if (a=b) then

or
if (a =
b) then

are all equivalent

Comments

• Comments in VHDL are indicated with
a “double dash”, i.e., “--”

Comment indicator can be placed anywhere in the
line
Any text that follows in the same line is treated as
a comment
Carriage return terminates a comment
No method for commenting a block extending over
a couple of lines

Examples:
-- main subcircuit
Data_in <= Data_bus; -- reading data from the input FIFO

VHDL FAQ

What is the difference between VHDL and Verilog?

Can I use VHDL for the analog part of a design?

How must I write VHDL to make it synthesizable?

How many versions of VHDL are there?
Are there any tools to generate VHDL test benches automatically?

Are there translators from 'C' to VHDL?
I've heard that VHDL is very inefficient for FPGAs. Is that true?
Are freeware / shareware VHDL tools available?

