

Advanced Electronic Design Automation

VHDL Quick Reference Guide

The Quick Reference contains the
following sections:

• The Design Entity
• Pre-defined Types and

Literals
• Objects and Operators
• Attributes
• Structured Types
• Configurations

• Packages
• Library and Use

Clauses
• IEEE Standard Logic
• IEEE Standard Logic

Support Packages
• Process Templates for

Synthesis

Author: Ian Elliott of Northumbria University

The Design Entity

The Design Entity is the basic building block of a VHDL description. It
comprises two parts:

• Entity Declaration

• Architecture Body

http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/

The Entity Declaration defines the interface of a hardware element (Ports)
along with any parameters of the hardware element (Generics). There can
only be one Entity in the library with a given entity_name.

The Architecture Body describes the internals of an Entity in terms of a
Behaviour, Structure or Dataflow, or a combination of these. All statements
within an Architecture are concurrent, ie. they execute in parallel. An Entity
may have many Architectures with different architecture_names.

The syntax of the Entity Declaration and the Architecture Body is shown
below:

--Entity Declaration with library and use clause
library lib_name;
use lib_name.package_name.all;
entity entity_name is

generic(generic_name : type := default_value);
port(port_names : direction type);

end entity entity_name; --entity[93]
--Architecture Body
architecture arch_name of entity_name is

architecture declarations

http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/

begin
concurrent statements

end architecture arch_name; --architecure[93]

Example

entity halfadd is
generic(delay : time := 10 ns);
port(a, b : in bit; sum, carry : out bit);

end entity halfadd;
architecture v1 of halfadd is
begin

sum <= a xor b after delay;
carry <= a and b after delay;

end architecture v1;

The Network Model

A VHDL description of a digital system may be hierarchical, ie composed
of a number of Design Entities connected together to form a network The
Ports of each Design Entity allow dynamic information to pass between
them. At the top level, the design may be described in terms of a Test
Bench Entity which is a special entity having no ports.

http://www.ami.ac.uk/courseware/adveda/vhdl/

Entity Ports

Most Entity Declarations contain a Port Clause. (The exceptions are
usually Test Bench Entities which do not need to communicate with other
Entities). This forms part of the Entity Header and defines the interface to
the Design Entity. A Port Clause defines the name, type and direction of
the ports of the Design Entity. As far as the Architecture Body of the Entity
is concerned, the ports are effectively signals which can be accessed by
the concurrent statements within the Architecture. The direction or mode of
a port determines the way in which the statements within the Architecture
may access it. The table below summarises the four different port modes.

Direction Properties

in

The Design Entity can read the port, ie,
the name of the port can only appear
on the right hand side (input) of a
signal assignment statement.

out
The Design Entity can write to the port,
ie. the name of the port can only
appear on the left hand side (target) of
a signal assignment statement.

buffer

Similar to mode out,but the port may
be fed back internally (such as the
outputs of a counter). A Buffer port is
not bidirectional.

inout
The Design Entity can both read and
drive the bidirectional signal, ie. the
name of the port can appear on both
sides of a signal assignment
statement.

The image shown below illustrates the logical equivalent of the port
modes. Ports of modes IN and OUT are shown in red and blue
respectively. A BUFFER port is shown in green. In this case the signal
coming from the AND gate is also feeding the input of another gate (hence
the signal will appear on the right hand side of an assignment statement),
but the BUFFER port cannot act as an input.

The INOUT port, shown in purple, is truly bi-directional, and therefore will
usually involve a three-state buffer. When the input IN3 is active, the three-

state buffer will be enabled and the INOUT1 port is driven by the 2-input
AND gate. When the IN3 input is inactive, the three-state buffer is turned
off and the INOUT1 port can act as an input to the 2-input OR gate via the
buffer.

Generics

Generics are a means of passing instance specific information into a
Design Entity. Inside the entity they are effectively a Constant. They are
commonly used to pass time delay values into a Design Entity or to set the
size of a scalable description.

Syntax:

entity entity_name is
generic(generic_name : type := default_value);
......port clause

end entity_name;

Examples:

entity myreg is
generic(numbits : positive := 8); --sets width of register

port(clock : in bit;
datain : in bit_vector((numbits - 1) downto 0);
dataout : out bit_vector((numbits - 1) downto
0));

end myreg;
entity mygate is

generic(delay : time := 10 ns); --sets delay of gate
port(a, b : in bit; f : out bit);

end mygate;
..........in the architecture

f <= a xor b after delay;

Concurrent Statements

Concurrent statements are at the heart of a VHDL description; any of the
statements listed below may be used within the statement part of the
Architecture Body. The ordering of concurrent statements is not important
since they are all effectively active at the same time. Execution of
concurrent statements is determined by signal events communicated from
one statement to another. For example if the same signal appears on the
input side of a number of concurrent statements, then all of the statements
would execute at the same time in response to an event on that signal.

Block statement

Process statement

Concurrent Assertion statement

Concurrent Signal Assignment statement

Conditional Signal Assignment

Selected Signal Assignment

Component Instantiation statement

Generate statement

Concurrent Procedure Call

Architecture Local Declarations

http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/

The following declarations may appear in the architecture declarative area
(between is and begin). The most commonly used are signal, type and
component. These three declare a local signal (to interconnect
components or processes), local type (to define the states of a state
machine for example) and local components respectively. Any component
used inside an architecture must be declared, either in the architecture
itself, or in a package which is used by the architecture. The exception to
this is the use of direct instantiation whereby a design entity can be
instantiated without the need for a component declaration (VHDL 1993
only).

Type declaration

Subtype declaration

Signal declaration

Constant declaration

Component declaration

Function declaration

Procedure declaration

Configuration specification

Sequential Statements

These statements are used within the statement part of a process
(between begin and end process) and also within sub-programs
(functions and procedures). Sequential statements execute in the order
they are written, much the same as in any general purpose high level
language. The most important sequential statement is probably the wait
statement which is often used in the description of sequential systems. The
sequential statements provided in the VHDL language are based on those
available in the ADA language.

wait

sequential signal assignment

variable assignment

http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/

if then else

case

loop

next

exit

null

Process Declarations

A variable is commonly declared within the declarative region of a
sequential process. The variable may be used within the process to hold
an intermediate value. Assignments to a variable take immediate effect,
whereas signals do not get updated until the end of the entire process
(assuming there are no wait statements between the signal assignment
and the end of the process).

variable variable_name : type;
variable variable_name : type := initial_value;

example :
--sequential process to model JK flip-flop
process
 --declare a local variable to hold ff state
 variable state : bit := '0';
begin
 --synchronise process to rising edge of clock
 wait until (clock'event and clock = '1');
 if (j = '1' and k = '1') then --toggle
 state := not state;
 elsif (j = '0' and k = '1') then --reset
 state := '0';
 elsif (j = '1' and k = '0') then --set
 state := '1';
 else --no change
 state := state;
 end if;
 --assign values to output signals
 q <= state after 5 ns;
 qbar <= not state after 5 ns;

http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/

end process;

Pre-defined Types and Literals

The predefined types provided by the VHDL language are defined in
Package Standard. This package is included implicitly by all Design
Entities, ie. there is no need to attach a library or use clause to the Design.
Some elements of the Standard Package are implementation dependent,
such as the range of predefined type INTEGER for example. The contents
of Package Standard are listed below (for Model technology's V-
System/PLUS):

package standard is
 type boolean is (false,true);
 type bit is ('0', '1');
 type character is (
 nul, soh, stx, etx, eot, enq, ack, bel,
 bs, ht, lf, vt, ff, cr, so, si,
 dle, dc1, dc2, dc3, dc4, nak, syn, etb,
 can, em, sub, esc, fsp, gsp, rsp, usp,

 ' ', '!', '"', '#', '$', '%', '&', ''',
 '(', ')', '*', '+', ',', '-', '.', '/',
 '0', '1', '2', '3', '4', '5', '6', '7',
 '8', '9', ':', ';', '<', '=', '>', '?',

 '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',
 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',
 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
 'X', 'Y', 'Z', '[', '\', ']', '^', '_',

 '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g',
 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
 'p', 'q', 'r', 's', 't', 'u', 'v', 'w',
 'x', 'y', 'z', '{', '|', '}', '~', del.....);

 type severity_level is (note, warning, error, failure);
 type integer is range -2147483648 to 2147483647;
 type real is range -1.0E308 to 1.0E308;
 type time is range -2147483647 to 2147483647
 units
 fs;
 ps = 1000 fs;

 ns = 1000 ps;
 us = 1000 ns;
 ms = 1000 us;
 sec = 1000 ms;
 min = 60 sec;
 hr = 60 min;
 end units;
 subtype delay_length is time range 0 fs to time'high;
 impure function now return delay_length;
 subtype natural is integer range 0 to integer'high;
 subtype positive is integer range 1 to integer'high;
 type string is array (positive range <>) of
character;
 type bit_vector is array (natural range <>) of bit;
 type file_open_kind is (
 read_mode,
 write_mode,
 append_mode);
 type file_open_status is (
 open_ok,
 status_error,
 name_error,
 mode_error);
 attribute foreign : string;
end standard;

Literals

Integer types

constant freeze : integer := 32; --no decimal point
constant a_pos : positive := 16#ff#; --hexadecimal
notation
constant b_nat : natural := 2#10101111#; --binary
notation
constant delay_time : time := 10 us; --physical types must
have units

Floating point numbers

variable factor : real := 32.0; --decimal point required
constant x : real := 2.2e-6; --exponential form

Enumeration type literals

signal flag : boolean := false; --type boolean can be true or
false
constant myconst : boolean := true
type state_type is (s0, s1, s2, s3); --define a user
enumeration type
signal ps, ns : state_type := s0; --create signals and
initialise
variable temp : bit := '1'; --type bit can be '0' or '1'
signal tied_low : bit := '0';
signal parity : std_logic := 'H'; --could be one of
'U','X','0','1','Z','W','H','L','-'

Array type literals

constant flag : bit_vector(0 to 7) := "11110101"; --bit
string literal
variable var1 : bit_vector(7 downto 0) := X"AA"; --
hexadecimal notation
signal bus_9_bit : bit_vector(0 to 8);

 bus_9_bit <= O"393"; --octal notation

.........
bus_9_bit <= (others => '0'); --aggregate assignment, set
all bits to '0'
bus_9_bit <= (0 => '1', 2 => '0', others => '1'); --setting
individual bits
signal databus : std_logic_vector(7 downto 0); --ieee
std_logic type
.........
databus <= "ZZZZZZZZ"; --setting the bus to high
impedance
signal bus_n_bits : std_logic_vector((n-1) downto 0); --an
n-bit signal
bus_n_bits <= (others => 'Z'); --sets n bits to 'Z' without a
loop
constant message : string := "hello"; --an array of ASCII
characters

Objects and Operators

VHDL Objects

Object Properties

Signal Signal objects are used to communicate dynamic events around the
model of a hardware system; they have both a time dimension and a
value. When a signal object is assigned a new value, it does not take
on the value immediately, but after an infinitesimally small time delay
known as a delta delay. When a signal changes it is said to have
undergone an event. Such an event can trigger further assignments to
take place. Only a signal can have an event occur on it.

Variable Can be changed by a variable assignment statement (usually within a
process). A variable changes immediately and has no time dimension.
Variables are most often used within the confines of a process to keep
track of a local value such as the state of a memory element or the
value of a counter register.

Constant A constant object is normally set to a particular value when declared; it
cannot be changed by assignment in the model. Constants are useful
for defining ROM contents or fixed parameters.

VHDL Built-in Types

Type Class VHDL Name

Numeric integer(-maxint to
+maxint)

positive(1 to +maxint)

natural(0 to +maxint)

real(-maxreal to
+maxreal)

Enumeration boolean(false, true)

bit('0', '1')

character(ASCII set)

Array bit_vector(array of bit)

string(array of
character)

Physical time(units fs, ps , ns,
us....)

VHDL Built-in Operators

Operator
Class VHDL Name Operands

Arithmetic + | - | * | / | mod | rem | abs | ** Integer, Real and
Physical

Logical
and | or | not | nand | nor | xor |
xnor

sll | srl | sra | sla | ror | rol

Boolean, Bit and
Bit_vector

Relational = | /= | < | > | <= | >=
Valid for all types,
ordering operators
work from left to right

Miscellaneous
& (Aggregate operator -
concatenates two arrays to form a
larger array)

One dimensional
arrays

Attributes

Attributes supply additional information about an item, ie. a signal, variable,
type or component. Certain attributes are predefined for types, array
objects and signals. User defined attributes may be declared. These may
have no effect on simulation, and are often used to supply information to
other design tools such as PCB layout or PLD/FPGA synthesis tools.

Listed below are the most commonly used attributes:

Scalar and Array Attributes

Attribute Description - X is a Scalar or Array object

X'high The upper bound of X (or upper index if X is an array)

X'low The lower bound of X (or lower index if X is an array)

X'left The leftmost bound of X(or leftmost index if X is an array)

X'right The rightmost bound of X (or rightmost index if X is an array)

Constrained Array Attributes

Attribute Description - X is a constrained array object

X'range The range of X (often used in loop statement)

X'reverse_range The range of X back-to-front

X'length X'high - X'low + 1 (integer)

Signal Attributes

Attribute Description - X is a signal object

X'event True when X has an event on it (boolean, often used to detect a
clock edge)

X'active True when X is assignment to (boolean)

X'last_event When X last had an event (time)

X'last_active When X was last assigned to (time)

X'last_value Previous value of X (same type as X)

New Signal Creating Attributes

Attribute Description - X is a signal object

X'delayed(t) A copy of signal X, delayed by time t (same type as X)

X'stable(t) True when X is unchanged for time t (Boolean)

X'quiet(t) True if X is unassigned for time t (Boolean)

X'transaction Toggles when X is assigned to (Bit)

Examples

--user defined attribute to define a components PCB package
type ic_package is (dil, plcc, pga);
attribute ptype : ic_package;
attribute ptype of u1 : component is plcc;
attribute ptype of u2 : component is dil;

--loop statement using range of a bit_vector for iteration
variable temp : bit_vector(15 downto 0);
...........
for i in temp'range loop...... --loop 16 times

--suspend a process until clock rises
wait until clock'event and clock'last_value = '0';

Structured Types

The VHDL language provides two structured types - Arrays and Records.

Built-in types bit_vector and string are arrays of bit and characters
respectively. These array types are unconstrained, which means that the
actual number of elements is not defined in the type declaration. The
number of elements is defined when an object is created.

type bit_vector is array (integer range <>) of bit;
type std_logic_vector is array (natural range <>) of
std_logic;

Object declarations:

signal my_bus : bit_vector(7 downto 0);

General syntax

type type_name is type_definition;

examples

type t_int is range 0 to 9; --user defined numeric type
type t_real is range -9.9 to 9.9;

type my_state is (reset, idle, acka); --user defined
enumerated type
signal state : my_state := reset;

Arrays type declaration

type type_name is array(range) of element_type;

examples

type ram is array (0 to 31) of bit_vector(3 downto 0);
--creating a ram variable with initial contents
variable ram_var : ram :=
("0000","0001","0101",......."1111");

Records

type type_name is record
 element_declarations
end record;

examples

--declaring subtypes for hours, minutes and seconds
subtype hours is natural;
subtype minutes is integer range 0 to 60;
subtype seconds is integer range 0 to 60;

--record type to define elapsed time
type elapsed_time is
 record
 hh : hours;
 mm : minutes;
 ss : seconds;
 end record;

--function to increment elapsed time by one second
function inctime (intime :elapsed_time) return
elapsed_time is
 variable result : elapsed_time;
begin
 result := intime;

 --notice use of selected naming to access fields of
 --the record structure (object_name.field_name)
 result.ss := result.ss + 1;
 if result.ss = 60 then
 result.ss := 0;
 result.mm := result.mm + 1;
 if result.mm = 60 then
 result.mm := 0;
 result.hh := result.hh + 1;
 end if;
 end if;
 return result;
 end function inctime;

Assigning to records using aggregates:

--an object which is a record type may be assigned to using
an aggregate
--for example in the case of the object 'result' within the
above function
result := (0,0,0); --zero time
result := (2,45,6); --2 hours, 45 minutes and 6 seconds

Configurations

The Configuration Declaration is a mechanism for Binding Components to
Entity-Architecture pairs within a structural Architecture. Configurations can
also be used to assign values to the generics of a component which
override the default values.

Syntax:

configuration config_name of entity_name is
for architecture_name

for instance_label : component_name
use entity library_name.entity_name(arch_name);

for arch_name ..--lower level configuration
specifications
end for;

end for;
end for;

end configuration config_name; --configuration [93]
Example:

configuration parts of dec2to4_bench is
for structural

 for generator : dec2to4_stim
 use entity work.dec2to4_stim(behavioural);
 end for;

 for circuit : dec2to4
 use entity work.dec2to4(structural);
 for structural
 for all : inv
 use entity work.inv(behaviour)
 generic map(tplh => 10 ns,
 tphl => 7 ns,
 tplhe => 15 ns,
 tphle => 12 ns);
 end for;
 for all : and3
 use entity work.and3(behaviour)
 generic map(tplh => 8 ns,
 tphl => 5 ns,
 tplhe => 20 ns,
 tphle => 15 ns);
 end for;
 end for;
 end for;

end for;
end configuration parts;

Packages

A Package is used to group together declarations which may be used by
several design units (mainly entities). The declarations include Types,
Constants, Components, Attributes, Functions and Procedures. Items
contained within a package can be made visible to an entity by attaching a
use clause to the entity.

Syntax:
package package_name is

declarations
end package package_name; --package [93]

Example:
package demo_pack is

http://www.ami.ac.uk/courseware/adveda/vhdl/

constant some_flag : bit_vector := "11111111";
type state is (reset, idle, acka);
component halfadd

port(a, b : in bit; sum, carry : out bit);
end component;

end package demo_pack;

Library and Use Clauses
The VHDL language makes use of Library and Use clauses to organise design
libraries and promote design re-use. The operating system dependent aspect of
libraries is abstracted out of the language by means of a mapping between a
logical name and an operating system path name; the latter points to the directory
containing the library. The library itself is a database containing analysed design
units. Typically a library will contain a Package which declares all of the
components in the library along with the compiled design units for each
component; the latter are required for simulation purposes.

library library_name_1, library_name_2, ...;
use library_name_1.package_name_1.all;
use library_name_2.package_name_2.all;

Example - Source file listing showing typical format of design units for compilation
into a library. This file will be compiled into a library named mylib.

entity mycomp1 is....--design entity for component
architecture v1 of mycomp1 is...
.....
entity mycomp2 is....--design entity for component
architecture v1 of mycomp2 is...
.....
entity mycomp3 is....--design entity for component
architecture v1 of mycomp3 is...
.....
--package declaration groups declarations together
package mycomponents is
 component mycomp1end component--component declarations
 component mycomp2end component
 component mycomp3end component
 signal power : std_logic := '1'; --global signal declarations
 signal ground : std_logic := '0';
end package mycomponents;

Example - Clauses attached to a design entity using above library of components

library mylib; --this clause makes the library name 'mylib' visible
use mylib.mycomponents.all; --makes all mycomponents declarations
visible

http://www.ami.ac.uk/courseware/adveda/vhdl/

entity--this entities' architecture can use mycomp1, mycomp2 etc..

IEEE Standard Logic

Package std_logic_1164 defines industry standard digital types for
modelling real hardware. In addition to defining the standard logic types,
the package also includes definitions of the basic logical functions (and,
or, xor etc...) for types std_logic and std_logic_vector, as well as the
functions rising_edge(signal) and falling_edge(signal). The latter are
used with signals of type std_logic and return a Boolean result which is
true if the signal has changed from '0' to '1' (rising_edge) or '1' to '0'
(falling_edge) during the current simulation cycle.

Type std_logic supports accurate simulation using 9-values:

Uninitialised 'U'

Forcing Unknown 'X'

Forcing Zero '0'

Forcing One '1'

High Impedance 'Z'

Weak Unknown 'W'

Resistive Zero 'L'

Resistive One 'H'

Don't care '-'

To use IEEE Std_logic, precede Entity Declaration with the following
context clause:

library ieee;
use ieee.std_logic.all;

Example - An Octal D-Type Register with three-state outputs:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY ttl374 IS

 PORT(clock, oebar : IN std_logic;
 data : IN std_logic_vector(7 DOWNTO 0);
 qout : OUT std_logic_vector(7 DOWNTO 0));
END ENTITY ttl374;
ARCHITECTURE using_1164 OF ttl374 IS
 --internal flip-flop outputs
 SIGNAL qint : std_logic_vector(7 DOWNTO 0);
BEGIN
 qint <= data WHEN rising_edge(clock);
 qout <= qint WHEN oebar = '0' ELSE "ZZZZZZZZ"; --high
impedance
END ARCHITECTURE using_1164;

IEEE Standard Logic Support Packages

The following packages are widely used for simulation and synthesis; each
package contains overloaded functions for arithmetic operations on digital
numbers represented as bit_vectors or std_logic_vectors.

• Std_logic_arith

Defines a set of arithmetic, conversion and comparison functions for types
SIGNED*, UNSIGNED*, INTEGER, STD_LOGIC and
STD_LOGIC_VECTOR. *Types SIGNED and UNSIGNED are arrays of
Std_logic

• Std_logic_signed

Defines a set of signed two’s complement arithmetic, conversion and
comparison functions for type STD_LOGIC_VECTOR.

• Std_logic_unsigned

Defines a set of unsigned arithmetic, conversion and comparison functions
for type STD_LOGIC_VECTOR.

• Numeric_bit

Defines a set of signed and unsigned arithmetic, conversion and
comparison functions for types SIGNED and UNSIGNED. The base
element of types SIGNED and UNSIGNED is type BIT.

• Numeric_std

Defines a set of signed and unsigned arithmetic, conversion and
comparison functions for types SIGNED and UNSIGNED. The base
element of types SIGNED and UNSIGNED is type STD_LOGIC.

Example - context clause:

LIBRARY ieee;
USE ieee.Std_logic_1164.ALL;
USE ieee.Numeric_bit | Numeric_std |
Std_logic_arith.ALL;
ENTITY

Example:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity edgecntr is
 port(clk, pulsein, clear : in std_logic;
 count : buffer std_logic_vector(3 downto 0));
end entity edgecntr;

architecture v1 of edgecntr is
begin
 cntr : process
 begin
 wait until rising_edge(clk);
 if clear = '1' then
 count <= (others => '0');
 elsif pulsein = '1' then
 count <= count + 1; --std_logic_unsigned function
'+'
 else
 null;
 end if;
 end process;
end architecture v1;

Process Templates for Synthesis

A VHDL Process can be used to describe both combinational and
sequential logic. The templates given below illustrate standard formats for
describing the basic types of logic for the purposes of synthesis (they can
also be used for simulation).

Combinational Logic

Latches plus Logic

Flip-flops plus logic

Asynchronous Reset

Synchronous Reset

Combinational Logic

--combinational logic
process(all_inputs)
begin
 ...To avoid unwanted latches....
 ...assign all outputs a default value at the top of the
process
 ...OR specify output values for ALL possible input
combina ions.

t

 ...Describe combinational logic using if..then..else,
 ...case..when, loop statements etc.
end process;

Latches plus Logic

http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/

--latches plus logic
process(all_inputs)
begin
 if enable = ‘1’ then
 ...latches plus logic
 ...when en -> '0' outputs retain value
 end if;
end process;

Flip-flops plus logic

--flip-flops plus logic
process
begin
 wait until rising_edge(clock);
 ...flip-flops plus logic
 ...any assigned output is a flip-flop output
end process;

Asynchronous Reset

--asynchronous reset
process(clock, reset)
begin
 if reset = ‘1’ then
 ..asynchronous reset action
 elsif rising_edge(clock) then
 ...flip-flops plus logic
 end if;
end process;

Synchronous Reset

--synchronous reset
process
begin
wait until rising_edge(clock);

 if reset = ‘1’ then
 ...synchronous reset action
 else
 ...flip-flops plus logic
 end if;
end process;

Block Statement
A Block defines a region of visibility within an Architecture. (An Architecture
is itself a Block).

Block statements are used to partition a design into sub-units without
having to use components. The declarative part of a Block may declare
local signals, types and functions etc. which are only visible within the
enclosing block. Blocks may have Ports and Generics (with Port and
Generic mapping to signals within the parent Architecture).

Signals declared outside a Block are visible within the Block, but the
reverse is not true. Blocks may be nested.

Syntax:

label : block is --is [93]
local_declarations

begin
concurrent_statements

end block label;

Example:

architecture ..
 signal address, offset : natural range 0 to 1023; --10-bit
+ve numbers
 signal suboff, clear, clock : bit;
begin
 cntr10 : block
 signal count : natural := 0; --declare a local signal
 begin --dataflow model of address counter
 count <= 0 when clear = '1' else
 ((count + 1) mod 1024) when (clock'event and
clock = '1')
 else count; --10-bit counter with async clear
 address <= count when suboff = '0' else

http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/

 (count - offset) when ((count - offset) >= 0)
 else (1024 - abs(count - offset)); --arithmetic logic
end block cntr10;

Process Statement
A process statement is a concurrent statement which contains a sequential
algorithm. The statements within a process are sequential statements and
they execute in the order that they appear. A process can contain wait
statements, which suspend the execution of the process, or it may contain
a sensitivity list, but not both.

A process never terminates. It is either active or suspended.

Syntax:

optional_label : process (optional sensitivity list) is --is [93]
process declarations

begin
sequential statements

end process optional_label;

Concurrent Assertion Statement

The concurrent assertion statement is often used in the statement part of
an entity declaration. This is an optional part of the entity declaration which
follows the entity header containing the generic and port clauses. The
statement is typically used to check for timing violations occurring on
inputs to the entity such as a set-up time, hold time or minimum pulse
width requirement. The check is defined by the boolean condition which
will often refer to the signal ports of the entity.

Being a concurrent statement, it may also be placed in an architecture
statement part.

assert Boolean_condition [report String_literal] [severity
Level] ;

Concurrent Signal Assignment Statement

http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/

The Concurrent Signal Assignment Statement assigns a value to a target
signal whenever any of the signals on the right hand side (input) of the
statement have an event on them. Every concurrent signal assignment
statement creates a driver for the target signal. The expression may be a
logical expression involving other signals, in which case the statement
represents simple combinational logic. Alternatively the expressions may
be values which are scheduled to occur on the target signal during the
simulation. The default delay mode for all signal assignments in VHDL is
inertial, which means that input signal pulses which are shorter than the
specified delay clause will be ignored by the statement, ie. the input signal
fails to overcome the inertia of the logic circuit. If pure time delays are
being modelled, such as in the case of a delay line, the keyword 'transport'
precedes the value expression.

signal_name <= [transport] expression [after delay]
 {,expression2 [after delay2]};

The following examples illustrate the use of the concurrent signal
assignment statement:

--a half adder with delays
sum <= a xor b after 5 ns;
carry <= a and b after 10 ns;
--creating a waveform -__--_ , at 50 ns the signals stays at
'0'
pulse <= '1', '0' after 10 ns,
 '1' after 30 ns,
 '0' after 50 ns;

--generating a clock, this statement triggers itself
clock <= not clock after period/2;

Conditional Signal Assignment

The Conditional Signal Assignment statement is a concurrent statement
which is somewhat similar to the if..then..else statement in the sequential
part of the VHDL language. The statement executes whenever an event
occurs on any signal appearing on the right hand side (input) of the
statement, ie. in any of the expressions or boolean_conditions. Unlike the
Selected Signal Assignment statement, each condition is tested in
sequence (condition1 then condition2 etc.), the first to return a true result
determining the value assigned to the target signal; the remaining
conditions are ignored. In the 1987 version of VHDL the else part is

mandatory. However, the 1993 standard allows the else part to be missed
out. This implies that the conditional signal assignment statement could be
used to describe simple flip-flops and latches. A new keyword, unaffected,
was added in the 1993 release for use in concurrent signal assignments to
indicate that under certain conditions the target signal is unaffected,
thereby implying memory.

signal_name <= expression1 when boolean_condition1 else
 expression2 when boolean_condition2 else
expression3;

The following examples illustrate the use of the conditional signal
assignment statement:

--a d-type flip-flop
q <= d when (clock'event and clock = '1');
--a 4 input multiplexer
q <= i0 when (a = '0' and b = '0') else
 i1 when (a = '1' and b = '0') else
 i2 when (a = '0' and b = '1') else
 i3 ;
--an 8-input priority encoder, in7 is highest priority input
level <= "111" when in7 = '1' else
 "110" when in6 = '1' else
 "101" when in5 = '1' else
 "100" when in4 = '1' else
 "011" when in3 = '1' else
 "010" when in2 = '1' else
 "001" when in1 = '1' else
 "000";

Selected Signal Assignment
The Selected Signal Assignment statement is a concurrent statement
which is somewhat similar to a Case statement in the sequential part of the
VHDL language. All signals appearing on the right hand (input) side of the
statement can cause the statement to execute. This includes any signals in
the select_expression as well as in any of the expressions and choices
listed in each 'when' limb of the statement.

There is no priority associated with any particular 'when' alternative which
means that choices must not overlap and all possible choices for the

select_expression must be included. Otherwise a final 'when others' limb
must be included to cover those choices not elaborated.

with select_expression select
signal_name <= expression1 when choice1,
 expression2 when choice2,
 expression3 when choice3|choice4, --multiple
alternative choices
 expression4 when choice5 to choice7, --discrete range
of choices
 expression5 when others; --covers all possible
choices not mentioned

The selected signal assignment statement is useful for describing
multiplexers and arbitrary combinational logic based on a truth table
description, as the following example illustrates:

entity fulladd is
 port(a,b,cin : in bit; s,cout : out bit);
end fulladd;

architecture zero_delay_behave of fulladd is
begin
 with a&b&cin select --select expression is an aggregate
 s <= '1' when "010"|"100"|"001"|"111",'0' when
others;
 with a&b&cin select
 cout <= '1' when "011"|"101"|"110"|"111",'0' when
others;
end zero_delay_behave;

Component Instantiation Statement

A Component Instantiation Statement creates an occurence of a
component. The label is compulsory, in order to differentiate between
instantiations of the same component. The port_association_list defines
which local signals connect to which ports of the component. The
association list can be positional or named (see examples). Ports may be
left unconnected by associating the key word open to a component port. A
component having generics has a generic_association_list which maps
values to the generics for a given instance; these will override values
defined by the component's entity declaration.

instance_label : component_name
 generic map(generic_association_list)
 port map(port_association_list);

The following example shows a 2-to-4 decoder described in terms of
gates:

entity dec2to4 is
 port(s0,s1,en : in bit; y0,y1,y2,y3 : out bit);
end dec2to4;

architecture structural of dec2to4 is

 --components must be declared before being used
 component inv
 port(a : in bit; b : out bit);
 end component;
 component and3
 port(a1,a2,a3 : in bit; o1 : out bit);
 end component;
 signal ns0,ns1 : bit;

begin

i1 : inv port map(s0,ns0); --positional association
i2 : inv port map(s1,ns1);

--positional association, actuals are connected by position
a1 : and3 port map(en,ns0,ns1,y0);
a2 : and3 port map(en,s0,ns1,y1);

a3 : and3 port map(en,ns0,s1,y2);
--named association formal => actual
a4 : and3 port map(a1 => en, a2 => s0, a3 => s1, o1 => y3);

end structural;

Direct Instantiation (VHDL 1993)
The 1993 release of VHDL allows design entities to be instantiated in other
design entities directly, ie. without the need to declare a component or set up a
binding. The syntax for direct instantiation is shown below:

label : entity lib_name.entity_name(architecture_name) port map (.....);
G1 : entity WORK.BLOCK1(RTL) port map (A, B, F);

Generate Statement
The Generate Statement is used to replicate concurrent statements over a
specified range. If the concurrent statements are component instantiations,
then this creates an array of components. This is very useful for creating
regular structures like shift registers, memory circuits and ripple carry
adders.

The label is compulsory with a generate statement.

The statement may be nested to create two dimesional arrays of
components.

The if.. generate statement is often used within a generate structure to
account for irregularities (see example).

label : for parameter in range generate
 concurrent_statements

label : if condition generate
 concurrent_statements
end generate label;

end generate label;
Example 1 - n-bit binary adder:

--n-bit binary adder using generated signal assignments
entity addn is
 generic(n : positive := 3); --no. of bits less one
 port(addend, augend : in bit_vector(0 to n);
 carry_in : in bit; carry_out, overflow : out bit;
 sum : out bit_vector(0 to n));
end addn;

http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/

architecture generated of addn is
 signal carries : bit_vector(0 to n);
begin
addgen : for i in addend'range --range is 0 to n
 generate
 lsadder : if i = 0 generate --lsb is a special case
 sum(i) <= addend(i) xor augend(i) xor carry_in;
 carries(i) <= (addend(i) and augend(i)) or
 (addend(i) and carry_in) or
 carry_in and augend(i));
 end generate;
 otheradder : if i /= 0 generate --all other stages cascade
 sum(i) <= addend(i) xor augend(i) xor carries(i-1);
 carries(i) <= (addend(i) and augend(i)) or
 (addend(i) and carries(i-1)) or
 (carries(i-1) and augend(i));
 end generate;
 end generate;
 carry_out <= carries(n);
 overflow <= carries(n-1) xor carries(n);
end architecture generated;

Example 2 - n-bit Synchronous Binary Counter:

--a T-type flip flop
library ieee;
use ieee.std_logic_1164.all;
entity tff is
 port(clk, t, clear : in std_logic; q : buffer std_logic);
end tff;

architecture v1 of tff is
begin
 process(clear, clk) --signals process is sensitive to
 begin
 if clear = '1' then --asynchronous reset
 q <= '0';
 elsif rising_edge(clk) then
 if t = '1' then
 q <= not q;
 else
 null; --no change , q retains current value
 end if;

 end if;
 end process;
end v1;

--An scalable synchronous binary counter
library ieee;
use ieee.std_logic_1164.all;
entity bigcntr is
 generic(size : positive := 32);
 port(clk, clear : in std_logic;
 q : buffer std_logic_vector((size-1) downto 0));
end bigcntr;

architecture v1 of bigcntr is

 component tff is
 port(clk, t, clear : in std_logic; q : buffer std_logic);
 end component;

 signal tin : std_logic_vector((size-1) downto 0);

begin

 --generate counter T-type flip-flops
 genttf : for i in (size-1) downto 0 generate
 ttype : tff port map (clk, tin(i), clear, q(i));
 end generate;
 --generate counter carry AND gates
 genand : for i in 0 to (size-1) generate
 t0 : if i = 0 generate --T(0) tied to logic-1
 tin(i) <= '1';
 end generate;
 t1_size : if i > 0 generate --cascaded 2-input AND gates
 tin(i) <= q(i-1) and tin(i-1);

 end generate;
 end generate;

end v1;

Concurrent Procedure Call
A Procedure is one of the two types of sub-program provided by VHDL, the
other is a Function. Both Procedures and Functions embody a group of
sequential statements into a well defined routine which carries out some
specific task. Functions are used to compute and return a value, given a
set of input parameters. A common function provided within the
Std_logic_1164 package is rising_edge(..). This function is passed a signal
parameter and returns a Boolean value indicating whether or not the signal
has undergone a rising edge transition. The function rising_edge(..) makes
use of the attributes of the signal being passed to it, such as event and
last_value, to deduce the return value.

Procedures can have multiple parameters of mode IN, OUT and INOUT.
Signals which are either IN or INOUT parameters of a procedure are
effectively in the sensitivity list for that procedure. This results in the
procedure being called (invoked) whenever an event occurs on any of the
actual signal parameters being passed into the procedure. In this way
concurrent procedures can be used instead of component instantiation
statements.

Syntax:

procedure_name [(actual_parameter1,
actual_parameter2,...)];

Example - creating a D-Type Flip-Flop using a procedure:

dff1 : dff_proc(clk, clear, q); --dff_proc is a procedure

Type Declaration

A type declaration creates a new type which can be assigned to any of the
VHDL objects (signal, variable and constant). The most common use of
the type declaration is to declare an enumeration type to represent the
state of a Finite State Machine. Commonly used types are often declared
inside of a package and the package can then be used by any design unit
by including a use clause.

type identifier is type_definition ;

Subtype Declaration

Subtypes are often used to create a type which can make use of the
functions supported by the base type, while having a constrained set of
values, or being subject to a resolution function.

The most common example of this is the sub-type std_logic which is a
resolved subtype of std_ulogic. This means that objects of type std_logic
can make use of all of the functions provided for objects of type std_ulogic
in addition to being resolved, ie. such objects can have multiple drivers.

subtype subtype_name is
[resolution_function] base_type_name [range constraint];

Signal Declaration

Creates a signal object. Signals declared within Architectures are local
signals. They are only accessible within the confines of the Architecture. A
signal may be given an initial value on declaration; if this is omitted then
the signal takes on the value corresponding to the left hand element of the
signal type declaration. For example, signals of type bit are initialised to '0'
by default, whereas signals of type std_logic are initialised to 'U'
(Unitialised).

signal signal_name : type;
signal signal_name : type := initial_value;

Constant Declaration

constant constant_name : type := value;

Component Declaration

An architecture which instantiates other design entities in the form of
components must declare them explicitly in the architecture declarative
part.

component component_name is --is [93]

generic(generic_list);
port(port_list);

end component;

Function Declaration

Sub-programs (Functions and Procedures) can be declared in the
declarative part of an architecture (or an entity). However it is more usual
for them to be declared in a package body. This allows any design unit to
make use of them by means of a context clause.

function function_name(parameter_list) return type is
declarations

begin
sequential_statements

end function function_name;

Procedure Declaration

Sub-programs (Functions and Procedures) can be declared in the
declarative part of an architecture (or an entity). However it is more usual
for them to be declared in a package body. This allows any design unit to
make use of them by means of a context clause.

procedure procedure_name (parameter_list) is
declarations

begin
sequential statements

end procedure procedure_name;

Configuration Specification

The Configuration Specification is used in the declarations part of the
architecture body. It is used to bind together a component instance with a
library unit, ie. an entity-architecture pair. It is not as powerful as the
primary design unit known as a configuration declaration.

for instance_name : component_name
use entity library_name.entity_name(architecture_name);

Examples:

http://www.ami.ac.uk/courseware/adveda/vhdl/
http://www.ami.ac.uk/courseware/adveda/vhdl/

FOR rom : rom256x8 USE ENTITY
work.rom256x8(version2);
FOR ALL : andg3 USE ENTITY work.andg3(behaviour); --
ALL selects every instance of andg3

Wait
The wait statement provides a mechanism for suspending execution of a
process until one or more conditions are met.

There are three types of wait statement:

wait on signal_event;

wait until boolean_condition;

wait for time_expression;

A single wait statement can combine all three conditions or have none at
all.

The following statement suspends a process indefinitely:

wait;

Execution of a wait statement causes the simulator to complete the current
simulation cycle and increment time by one delta. This has the effect of
updating all signals which have previously been assigned with their
corresponding driver values. This would otherwise occur after execution of
the process statement itself.

If a process contains wait statements, it cannot have a sensitivity list:

process(a,b,c)
begin
.......

wait on a,b,c ; X incorrect !

.......
end process;

The wait on signal_event statement provides an alternative to the
sensitivity list which can appear after the word process. The following
processes p1 and p2 are exactly the same:

p1 : process (a,b,c)
begin
......
......
......
end process p1;
p2 : process
begin
......
......
wait on a,b,c;
end process p2;

Both processes are sensitive to events on signals a, b and c. In the lower
example, the wait statement is placed at the end of the process, since all
processes are executed once at the start of a simulation.

The wait until boolean_condition statement will suspend a process until
the specified boolean condition becomes true. It is usual for the boolean
condition to involve signals. These signals will be in an effective sensitivity
list created by the statement. Whenever an event occurs on one or more of
the signals, the boolean condition is tested, and if true, the process is
resumed. For example, the two statements below suspend a process until
a rising edge occurs on the signal named clock.

wait until (clock'event and clock = '1'); --signal clock is of
type bit
wait until rising_edge(clock); --signal clock is of type
std_logic

examples:

entity cntr3 is
 port(clock : in bit; count : out natural);

end cntr3;

architecture using_wait of cntr3 is
begin
 process
 begin
 wait until (clock'event and clock = '1');
 count <= 0;
 wait until (clock'event and clock = '1');
 count <= 1;
 wait until (clock'event and clock = '1');
 count <= 2;
 end process;
end using_wait;
wait for 10 ns;
--updates signals and suspends a
--process for 10 ns.

wait for 0 ns;
--updates signals and advances
--delta time.

Sequential signal assignment

Signal assignment statements appearing inside a process statement are
sequential signal assignments. Within a process, only one driver is allowed
per signal. Therefore multiple assignments to the same signal behave in a
totally different way to multiple concurrent assignments. Each signal
assignment within a process to a given signal contributes to the overall
driver for that signal.

Syntax:

signal_name <= expression;
signal_name <= expression1 after delay1,

expr2 after del2,
expr3 after del3,....;

Example:

process begin
rx_data <= transport 11 after 10 ns; --(1)
rx_data <= transport 20 after 22 ns; --(2)

rx_data <= transport 35 after 18 ns; --(3)
end process;

In the above example, the driver for signal rx_data is updated following the
execution of each statement as follows:

after (1) : rx_data <------ curr @ now ,11 @ 10 ns

after (2) : rx_data <------ curr @ now ,11 @ 10 ns , 20 @ 22 ns

after (3) : rx_data <------ curr @ now ,11 @ 10 ns , 35 @ 18 ns (previous
transaction is overwritten)

In the above case, after statement (3) is executed the transaction '20 @ 22
ns' is deleted from the driver and replaced with transaction '35 @ 18 ns',
since the delay for the latter is shorter. The rules governing how signal
drivers are affected by multiple sequential signal assignments are complex
and therefore beyond the scope of this guide. A basic rule which must be
observed when modelling digital hardware is:

• Within the confines of a process there is only one
driver allowed per signal

Multiple signal assignments to the same signal within a process are often
used to avoid unwanted latches being created when a combinational
process is synthesised. All output signals can be assigned default output
values at the top of the process. These values can be conditionally
overwritten by statements in the body of the process which ensures that all
outputs have a defined output value for all possible input combinations.
See the example below:

 process(I)
 begin
 GS <= '1'; --set default outputs
 A <= "000";
 if I(7) = '1' then
 A <= "111"; --override default A
 elsif I(6) = '1' then
 A <= "110";
 elsif I(5) = '1' then
 A <= "101";
 elsif I(4) = '1' then
 A <= "100";
 elsif I(3) = '1' then
 A <= "011";

 elsif I(2) = '1' then
 A <= "010";
 elsif I(1) = '1' then
 A <= "001";
 elsif I(0) = '1' then
 null; --assign defaul outputs
 else
 GS <= '0'; --override default GS
 end if;
 end process;

The following process creates a repetitive clock

clock_process : process
begin

clock <= '0', '1' after 50 ns;
wait for 100 ns;

end process;

Variable assignment

A variable assignment takes effect immediately; there is no time aspect.
The values of signals may be assigned to variables provided the types
match. Variables are used inside processes to hold local values.

variable_name := expression;

examples:

x := y;
q := d;

If then else

Note that both the elsif and else parts of the statement are optional and the
elsif part is repeatable. The boolean_expression is usually a relational
expression which returns either true or false. If none of the conditions are
true, the statements following the else keyword are executed, if an else
part is included. Each condition is tested sequentially, the first to return a
true result causes the statement immediately following to execute. The
next statement to execute is that which follows the 'end if' keyword.

if boolean_expression then

 {sequential_statements}
 {elsif boolean_expression then
 {sequential_statements} }
[else
 {sequential_statements}]
end if;

Examples:

if (x < 10) then
 a := b;
end if;
if (day = sunday) then
 weekend := true;
elsif (day = saturday) then
 weekend := true;
else
 weekday := true;
end if;

Case

When expression evaluates to a value which matches one of the choices
in a when statement part, the statements immediately following will be
executed up to the next when part. If none of the specified choices match,
the case statement should include an others clause in the final when part.
After the selected statements have executed control is transferred to the
statement following the end case key words.

case expression is
 when choice { | choice } =>
 {sequential_statemen s} t

t
 { when choice { | choice } =>
 {sequential_statemen s} }
end case;

Examples:

case instruction is
 when load_accum =>
 accum <= data;
 when store_accum =>
 data_out <= accum;
 when load|store =>

 process_io(addr);
 when others =>
 process_error(instruction);
end case;
...........
variable word3 : bit_vector(0 to 2);
variable number : natural;

case word4 is
 when "000" =>
 number := 0;
 when "100" =>
 number := 1;
 when "010" =>
 number := 2;
 when "110" =>
 number := 3;
 when "001" =>
 number := 4;
 when "101" =>
 number := 5;
 when "011" =>
 number := 6;
 when "111" =>
 number := 7;
end case;

Loop

Used for repetitive execution of a statement or statements. The sequential
statements enclosed within a 'while' loop will execute repeatedly as long as
the boolean_expression returns a true value. A 'for' loop will execute as
many times as specified in the discrete_range which can take the form:

simple_expression to|downto simple_expression

In the above, the two simple_expressions are usually integers specifying
the number of times the loop is to execute.

A simple loop statement without an iteration scheme or boolean_condition
is an infinite loop.

The index variable i is declared locally by the for loop statement. There is
no need to declare variable i explicitly in the process, function or
procedure. In a for loop statement the index variable i must not be
assigned a value within the body of the loop, ie. i must not appear on the
left hand side of a variable assignment statement. However, i can be used
on the right hand side of a statement.

The syntax of the three variations on the loop statement are shown below:

--looping through a set range
[loop_label :] for identifier in discrete_range loop
 { sequential_statements }
end loop [loop_label];

--entry test loop
[loop_label :] while boolean_expression loop
 { sequential_statements }
end loop [loop_label] ;

--unconditional loop
[loop_label :] loop
 { sequential_statements }
end loop [loop_label] ;

Examples:

while (day = weekday) loop
 day := get_next_day(day);
end loop;

for i in 1 to 10 loop
 i_squared(i) := i * i;
end loop;
--
variable binword8 : bit_vector(0 to 7) := "10101111";
variable outputnum : integer := 0;

for i in 0 to 7 loop
 if binword8(i) = '1' then
 outputnum := outputnum + 2**i ;
 end if;
end loop;
--
type day_of_week is (sun,mon,tue,wed,thu,fri,sat);

for i in day_of_week loop
 if i = sat then son <= mow_lawn;
 elsif i = sun then church <= family;
 else dad <= go_to_work;
 end if;
end loop;

Next
The next statement is used to prematurely terminate the current iteration
of a while, for or infinite loop.

next;
next loop_label;
next loop_label when condition;

Example:

for i in 0 to 7 loop
 if skip = '1' then
 next;
 else
 n_bus <= table(i);
 wait for 5 ns;
 end if;
end loop;

Exit
The exit statement is used to prematurely terminate a while, for or infinite
loop.

exit ;
exit loop_label;
exit loop_label when condition;

Example:

for i in 0 to 7 loop
 if finish_loop_early = '1' then
 exit;

 else
 n_bus <= table(i);
 wait for 5 ns;
 end if;
end loop;

Null
The null statement performs no action. It is usually used with the case or
if..then statement, to indicate that under certain conditions no action is
required.

null;

A jointly validated MSc course taught over the internet; a programme supported by EPSRC under the
Integrated Graduate Development Scheme (IGDS).

Text & images © 1999 Bolton Institute and Northumbria University unless otherwise stated.
website www.ami.ac.uk

Site developed by CRAL. Bolton Institute.
Last updated 01.12.01 RA

http://www.cral.ac.uk/

