
CHAPTER 4

REGULAR SEQUENTIAL CIRCUIT

4.1 INTRODUCTION

A sequential circuit is a circuit with memory, which forms the internal state of the circuit.
Unlike a combinational circuit, in which the output is a function of input only, the output
of a sequential circuit is a function of the input and the internal state. The synchronous
design methodology is the most commonly used practice in designing a sequential circuit. In
this methodology, all storage elements are controlled (i.e., synchronized) by a global clock
signal and the data is sampled and stored at the rising or falling edge of the clock signal. It
allows designers to separate the storage components from the circuit and greatly simplifies
the development process. This methodology is the most important principle in developing
a large, complex digital system and is the foundation of most synthesis, verification, and
testing algorithms. All of the designs in the book follow this methodology.

4.1.1 D FF and register

The most basic storage component in a sequential circuit is a D-type flip-flop (D FF). The
symbol and function table of a positive edge-triggered D FF are shown in Figure 4.l(a).
The value of the d signal is sampled at the rising edge of the clk signal and stored to FF.
A D FF may contain an asynchronous reset signal to clear the FF to ' 0 ' . Its symbol and
function table are shown in Figure 4.l(b). Note that the reset operation is independent of
the clock signal.

FPGA Protowping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

71

72 REGULAR SEQUENTIAL CIRCUIT

output
logic

~

d - next-state
* external

input

cI k

- logic

clk q*

4

4

f d

state-next >

(a) D FF

reset clk q*

- 0
~~

(b) D FF with asynchronous reset

reset clk en q*

1 0

4

0 1 4
reset o f 0 4

(c) D FF with synchronous enable

Figure 4.1 Block diagram and functional table of a D FF.

n
OUtDUt

Figure 4.2 Block diagram of a synchronous system.

The three main timing parameters of a D FF are Tcq (clock-to-q delay), Tsetup (setup
time), and Thold (hold time). Tcq is the time required to propagate the value of d to q at
the rising edge of the clock signal. The d signal must be stable around the sampling edge
to prevent the FF from entering the metastable state. Tsetup and Thold specify the time
intervals before or after the sampling edge.

A D FF provides 1-bit storage. A collection of D FFs can be grouped together to store
multiple bits and is known as a register.

4.1.2 Synchronous system

Block diagram
consists of the following parts:

The block diagram of a synchronous system is shown in Figure 4.2. It

0 State register: a collection of D FFs controlled by the same clock signal

INTRODUCTION 73

Next-state logic: combinational logic that uses the external input and internal state
(i.e., the output of register) to determine the new value of the register
Output logic: combinational logic that generates the output signal

Max..nal operating frequency One of the most difficult design aspects of a sequential
circuit is to ensure that the system timing does not violate the setup and hold time constraints.
In a synchronous system, the storage components are grouped together and treated as a single
register, as shown in Figure 4.2. We need to perfom timing analysis on only one memory
component.

The timing of a sequential circuit is characterized by f m a z , the maximal clock frequency,
which specifies how fast the circuit can operate. The reciprocal of f m a z specifies T c l o c k ,

the minimal clock period, which can be interpreted as the interval between two sampling
edges of the clock. To ensure correct operation, the next value must be generated and
stabilized within this interval. Assume that the maximal propagation delay of next-state
logic is Tcomb. The minimal clock period can be obtained by adding the propagation delays
and setup time constraint of the closed loop in Figure 4.2:

Tclock = Tcq + T c o m b + T s e t u p

and the maximal clock rate is the reciprocal:

1
- 1

-- f m a x =
Tclock Tcq + T c o m b + Tsetup

Timing constraint in Xilinx lSEXilinX wecif ic During synthesis, Xilinx software
will analyze the synthesized circuit and show f m a z in a report. We can also specify the
desired operating frequency as a synthesis constraint, and the synthesis software will try to
obtain a circuit to satisfy this requirement (i.e., a circuit whose f m a x is equal to or greater
than the desired operating frequency). For example, if we use the 50-MHz (i.e., 20-ns
period) oscillator on the prototyping board as the clock source, f m a z of a sequential circuit
must exceed this frequency (i.e., the period must be smaller than 20 ns). The following
lines can be added to the constraint file:

NET "clk" TNM-NET = "clk";
TIMESPEC "TS-clk" = PERIOD "clk" 20 ns HIGH 50 % ;

This indicates that the clk signal has a maximal period of 20 ns (i.e., 50 MHz) and a duty
cycle of 50%.

After synthesis, we can check the relevant timing information by invoking the View
Design Summary process from the ISE's Processes window. The Timing Constraints sec-
tion shows whether the imposed constraints are met, and the Static Timing Report section
provides more detailed timing information.

4.1.3 Code development

Our code development follows the basic block diagram in Figure 4.2. The key is to separate
the memory component (i.e., the register) from the system. Once the register is isolated,
the remaining portion is a pure combinational circuit, and the coding and analysis schemes
discussed in previous chapters can be applied accordingly. While this approach may make
the code a little bit more cumbersome at times, it helps us to better visualize the circuit
architecture and avoid unintended memory and subtle mistakes.

74 REGULAR SEQUENTIAL CIRCUIT

Based on the characteristics of the next-state logic, we divide sequential circuits into

0 Regular sequential circuit. The state transitions in the circuit exhibit a “regular”
pattern, as in a counter or shift register. The next-state logic is constructed primarily
by a predesigned, “regular” component, such as an incrementor or shifter.

0 FSM. The state transitions in the circuit do not exhibit a simple, repetitive pattern.
The next-state logic is constructed by “random logic” and synthesized from scratch.
It should be called a random sequential circuit, but is commonly known as an FSM
(finite state machine).

0 FSMD. The circuit consists of a regular sequential circuit and an FSM. The two parts
are known as a data path and a control path, and the complete circuit is known as an
FSMD (FSM with data path). This type of circuit is used to implement an algorithm
represented by register-transfer (RT) methodology, which describes system operation
by a sequence of data transfers and manipulations among registers.

three categories:

The three types of circuits are discussed in this and two subsequent chapters.

4.2 HDL CODE OF THE FF AND REGISTER

Describing storage components in HDL is a subtle procedure, and there are many ways to
do it. In fact, one common problem encountered by a new HDL user is the inference of
unintended latches and buffers. Instead of covering all possible forms of syntactic descrip-
tions, we introduce the code segments for several commonly used memory components.
Since our development process separates the register and the combinational circuit, these
components are sufficient for all designs in this book. The components are:

0 D F F
0 Register
0 Register file

4.2.1 D FF

We consider three types of D FFs:
0 D FF without asynchronous reset
0 D FF with asynchronous reset
0 D FF with synchronous enable

The first two are the most basic memory components and can be found in the library of
any device technology. The third can be constructed from a simple D FF. We include the
code since it is a frequently used memory component and can be mapped to the FF of the
Spartan-3 device’s logic cell.

D FF without asynchronous reset The function table of a D FF is shown in Fig-
ure 4.l(a) and the code is shown in Listing 4.1.

Listing 4.1 D FF without asynchronous reset

l i b r a r y i e e e ;
use i e e e . std-logic-1164. a l l ;
e n t i t y d - f f i s

p o r t (
clk: in std-logic;

HDL CODE OF THE FF AND REGISTER 75

d : i n std-logic;
q : out std-logic

1 ;
end d-ff ;

a r c h i t e c t u r e arch of d-ff i s
b e g i n

10

p r o c e s s (clk)
b e g i n

15 i f (clk’event and clk=’l’) then
q <= d ;

end i f ;
end p r o c e s s ;

end arch;

The rising edge is checked by the clk event and elk=' 1 expression, which represents
that there is a change in the clk signal (i.e., an “event”) and the new value is ’1’. If this
condition is t rue , the value of d is stored to q, and if this condition is false, q keeps its
previous value (i.e.. memorizes the value sampled earlier). Note that only the clk signal is
included in the sensitive list. This is consistent with the fact that the d signal is sampled only
at the rising edge of the c l k signal, and change in its value does not trigger any immediate
response.

D FF with asynchronous reset A D FF may contain an asynchronous reset signal, as
shown in the function table of Figure 4.l(b). The signal clears the D FF to ’0’ any time and is
not controlled by the clock signal. It actually has a higher priority than the regularly sampled
input. Using an asynchronous reset signal violates the synchronous design methodology
and thus should be avoided in normal operation. Its major application is to perform system
initialization. For example, we can generate a short reset pulse to force a system to an initial
state after turning on the power. The code for a D FF with asynchronous reset is shown in
Listing 4.2.

Listing 4.2 D FF with asvnchronous reset

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y d-ff-reset i s

p o r t (
5 clk, reset: i n std-logic;

d : i n std-logic;
q : o u t std-logic

1 ;
end d-f f -reset ;

a r c h i t e c t u r e arch o f d-ff-reset i s
b e g i n

10

p r o c e s s (clk, reset 1
b e g i n

I 5 i f (r e s e t = ’ l ’) then
q < = ’ O ’ ;

e l s i f (clk’event and c l k = ’ l ’) then

end i f ;
q <= d ;

76 REGULAR SEQUENTIAL CIRCUIT

XI end p r o c e s s ;
end arch;

Note that the reset signal is included in the sensitivity list, and its condition is checked
before the rising-edge condition.

D FF with synchronous enable A D FF may include an additional control signal,
en, to enable the FF to sample the input value. Its symbol and functional table are shown
in Figure 4.l(c). Note that the en signal is examined only at the rising edge of the clock
and thus is synchronous. If it is not asserted, the FF keeps its previous value. The code is
shown in Listing 4.3.

Listing 4.3 One-process coding style for a D FF with synchronous enable

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y d-ff-en i s

p o r t (
3 c l k, reset: i n std-logic;

e n : i n std-logic;
d : i n std-logic;
q : o u t std-logic

) ;
10 end d-f f -en ;

a r c h i t e c t u r e arch of d-ff-en i s
b e g i n

p r o c e s s (clk, reset)
15 b e g i n

i f (reset=’l’) then

e l s i f (clk’event and clk=’l’) then
q < = ’ O ’ ;

i f (en=’l’) then

end i f ;
20 q <= d ;

end i f ;
end p r o c e s s ;

end arch;

The enabling feature of this D FF is useful in maintaining synchronism between a fast
subsystem and a slow subsystem. For example, assume that the operation rates of a fast and
a slow subsystem are 50 MHz and 1 MHz. Instead of using a derived 1-MHz clock to drive
the slow subsystem, we can generate a periodic enable tick that is asserted one clock cycle
every 50 clock cycles. The slow subsystem is disabled (i.e., keep the previous state) for the
remaining 49 clock cycles. The same scheme can also be applied to eliminate a gated clock
signal.

Since the enable signal is synchronous, this circuit can be constructed by a regular D FF
and simple next-state logic. The code is shown in Listing 4.4, and its block diagram is
shown in Figure 4.3.

Listing 4.4 Two-segment coding style for a D FF with synchronous enable

a r c h i t e c t u r e two-seg-arch of d-ff-en i s
s i g n a l r-reg , r-next : std-logic;

HDL CODE OF THE FF AND REGISTER 77

clk
en
clk

reset

Figure 4.3 D FF with synchronous enable.

beg in
-- D FF

5 p r o c e s s (clk, reset)
beg in

i f (reset=’l’) then

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;
__ n e x t - s t a t e l o g i c
r-next <= d when en = ’ l ’ e l s e

I < r-reg ;
__ o u t p u t l o g i c
q <= r-reg;

end two-seg-arch ;

r-reg < = ’ O ’ ;

10 r-reg <= r-next;

For clarity, we use suffixes n e x t and -reg to emphasize the next input value and the
registered output of an FF. They are connected to the d and q signals of a D FF. The earlier
one-process code can be considered as shorthand for this more explicit description.

4.2.2 Register

A register is a collection of D FFs that are controlled by the same clock and reset signals.
Like a D FF, a register can have an optional asynchronous reset signal and a synchronous
enable signal. The code is identical to that of a D FF except that the array data type,
s t d - l o g i c v e c t o r , is needed for the relevant input and output signals. For example, an
8-bit register with asynchronous reset is shown in Listing 4.5.

Listing 4.5 Register

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y reg-reset i s

por t (
clk, reset: i n std-logic;
d: in std-logic-vector (7 downto 0) ;
q : out std-logic-vector (7 downto 0)

) ;
end reg-reset ;

10

78 REGULAR SEQUENTIAL CIRCUIT

a r c h i t e c t u r e arch of reg-reset i s
b e g i n

Ii

p r o c e s s (clk , reset)
b e g i n

i f (reset=’l’) then

e l s i f (clk’event and clk=’l’) then

end i f ;

q < = (o t h e r s = > ’ O ’) ;

q <= d ;

?O end p r o c e s s ;
end arch;

Note that the expression (others=>’O’) means that all elements are assigned to ’0’ and is
equivalent to t tOOOOOOOOrt in this case.

4.2.3 Register file

A register file is a collection of registers with one input port and one or more output ports.
The write address signal, w-addr, specifies where to store data, and the read address signal,
r-addr, specifies where to retrieve data. The register file is generally used as fast, temporary
storage. The code for a parameterized 2W-by-B register file is shown in Listing 4.6. Two
generics are defined in this design. The W generic specifies the number of address bits,
which implies that there are 2W words in the file, and the B generic specifies the number of
bits in a word.

Listing 4.6 Parameterized register file

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y reg-file i s

5 g e n e r i c (
B : integer:=8; -- number o f b i t s
W : integer:=2 -- number o f a d d r e s s b i t s

) ;
p o r t (

10 c lk, reset: i n std-logic;
wr-en: i n std-logic;
w-addr , r-addr : in std-logic-vector (W-1 downto 0) ;
w-data: i n std-logic-vector (B - 1 downto 0) ;
r-data: o u t std-logic-vector (B - 1 downto 0)

1’) ;
end reg-f ile;

a r c h i t e c t u r e arch of reg-file i s
t y p e reg-file-type i s a r r a y (2**W-1 downto 0) of

10 std-logic-vector (B - 1 downto 0) ;
s i g n a l array-reg : reg-f ile-type;

p r o c e s s (clk , reset)
b e g i n

25 i f (reset=’l’) t h e n

b e g i n

array-reg <= (o t h e r s = > (o t h e r s = > ’ O ’)) ;

SIMPLE DESIGN EXAMPLES 79

e l s i f (clk’event and clk=’l’) then
i f wr-en=’l’ then

array-reg(to-integer(unsigned(w-addr))) <= w-data;
?O end i f ;

end i f ;
end p r o c e s s ;
__ r e a d p o r t
r-data <= array-reg(to-integer(unsigned(r-addr)));

2 5 end a r c h ;

The code includes several new features. First, since no built-in two-dimensional ar-
ray is defined in the s td - log ic - I164 package a user-defined array-of-array data type,
reg-f i l e - t y p e , is introduced. It is first defined by a type statement and is then used by the
a r r ay - reg signal. Second, a signal is used as an index to access an element in the array, as
in a r r a y - r e g (. . w-addr . . 1. Although the description is very abstract, Xilinx software
recognizes this language construct and can derive the correct implementation accordingly.
The array-reg(. . .) <= . . . and . . . <= array-reg(. . .) statements infer decoding and
multiplexing logic, respectively.

Some applications may need to retrieve multiple data words at the same time. This can
be done by adding an additional read port:

r-data2 <= array-reg(to-integer(unsigned(r-addr-2)));

4.2.4 Storage components in a Spartan-3 devicexiiinx specific

In a Spartan-3 device, each logic cell contains a D FF with asynchronous reset and syn-
chronous enable. These D FFs basically constitute the register of Figure 4.2. Since a logic
cell also contains a four-input LUT, it will be wasteful if the cell is just used simply as
1 bit of a massive storage. The Spartan-3 device also has distributed RAM (random access
memory) and block RAM modules, and they can be used for larger storage requirements.
These modules can be configured for synchronous operation, and their characteristics are
somewhat like a restricted version of the register file. The configuration and inference of
these modules are discussed in Chapter 11.

4.3 SIMPLE DESIGN EXAMPLES

We illustrate the construction of several simple, representative sequential circuits in this
section.

4.3.1 Shift register

Free-running shift register A free-running shift register shifts its content to the left
or right by one position in each clock cycle. There is no other control signal. The code for
an N-bit free-running shift-right register is shown in Listing 4.7.

Listing 4.7 Free-running shift register

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y free-run-shift-reg i s

80 REGULAR SEQUENTIAL CIRCUIT

g e n e r i c (N: integer : = 8) ;
5 p o r t (

clk, reset: i n std-logic;
s-in: i n std-logic;
s-out : out std-logic

) ;
to end f ree-run-shif t-reg ;

a r c h i t e c t u r e arch of free-run-shift-reg i s
s i g n a l r-reg : std-logic-vector (N-1 downto 0) ;
s i g n a l r-next : std-logic-vector (N-1 downto 0) ;

__ r e g i s t e r
p r o c e s s (clk , reset
beg in

15 beg in

i f (reset=’l’) then
20 r-reg <= (o t h e r s = > ’ O ’) ;

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;

r-next <= s-in & r-reg(N-1 downto 1);
__ o u t p u t
s-out <= r-reg(0);

r-reg <= r-next;

25 -- n e x t - s t a t e l o g i c (s h i f t r i g h t I b i t)

end arch;

The next-state logic is a 1-bit shifter, which shifts r-reg right one position and inserts
the serial input, s-in, to the MSB. Since the 1-bit shifter involves only reconnection of
the input and output signals, no real logic is needed. Its propagation delay represents the
smallest possible Tcomb, and the corresponding f m a z represents the highest clock rate that
can be achieved for a given device technology.

Universal shift register A universal shift register can load parallel data, shift its content
left or right, or remain in the same state. It can perform parallel-to-serial operation (first
loading parallel input and then shifting) or serial-to-parallel operation (first shifting and
then retrieving parallel output). The desired operation is specified by a 2-bit control signal,
ctrl. The code is shown in Listing 4.8.

Listing 4.8 Universal shift register

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y univ-shift-reg i s

g e n e r i c (N : integer : = 8) ;
s p o r t (

clk, reset: in std-logic;
ctrl: i n std-logic-vector (1 downto 0) ;
d : i n std-logic-vector (N - 1 downto 0) ;
q : out std-logic-vector (N - 1 downto 0)

in) ;
end univ-shift-reg;

a r c h i t e c t u r e arch of univ-shift-reg i s

SIMPLE DESIGN EXAMPLES 81

s i g n a l r-reg : std-logic-vector (N-1 downto 0) ;
1 5 s i g n a l r-next : std-logic-vector (N - 1 downto 0) ;

b e g i n
__ r e g i s t e r
p r o c e s s (clk, reset)
b e g i n

20 i f (reset='l') then
r-reg <= (o t h e r s = > ' O ') ;

r-reg <= r-next;
e I s i f (clk ' event and clk= ' 1 ') then

end i f ;
:C end p r o c e s s ;

_- n e x t - s t a t e l o g i c
with ctrl s e l e c t
r-next <=

when " 0 0 " -- r-reg , no OP

30 r-reg"-2 downto 0) & d(0) when " 0 1 " , - - s h i f t l e f t :
d(N-1) & r-reg(N-1 downto 1) when "lo", - - s h i f t r i g h t ;
d when o t h e r s ; -- l o a d

__ o u t p u t
q <= r-reg;

35 end arch;

The next-state logic uses a 4-to-1 multiplexer to select the desired next value of the
register. Note that the LSB and MSB of d (i.e., d(0) and d(N-I)) are used as serial input
for the shift-left and shift-right operations.

In a Xilinx Spartan-3 device, a logic cell's 4-input LUT is implemented by a 16-by-1
SRAM. The same SRAM can also be configured as a cascading chain of sixteen 1-bit SRAM Xilinx
cells, which resembles a 16-bit shift register. This can be used to construct certain forms specific
of shift register and leads to very efficient implementation.

4.3.2 Binary counter and variant

Free-running binary counter A free-running binary counter circulates through a bi-
nary sequence repeatedly. For example, a 4-bit binary counter counts from "OOOO", "0001 'I,
. . , , to 'I 1 1 1 1 'I and wraps around. The code for a parameterized N-bit free-running binary
counter is shown in Listing 4.9.

Listing 4.9 Free-running binary counter

l i b r a r y ieee;
use ieee.std-logic-ll64.all;
use ieee. numeric-std. a l l ;
e n t i t y free-run-bin-counter i s

j g e n e r i c (N : integer : = 8);
p o r t (

clk, reset: i n std-logic;
max-tick: o u t std-logic;
q: o u t std-logic-vector (N-1 downto 0)

i n) ;
end free-run-bin-counter ;

a r c h i t e c t u r e arch of free-run-bin-counter i s

82 REGULAR SEQUENTIAL CIRCUIT

Table 4.1 Function table of a universal binary counter

syn-clr load en up q* Operation

1 - - - 00 ‘ . .OO synchronous clear
0 1 - - d parallel load
0 0 1 1 q+1 count up
0 0 1 0 q-I count down
0 0 0 - 9 pause

s i g n a l r-reg: unsigned(N-1 downto 0) ;
is s i g n a l r-next : unsigned (N - 1 downto 0) ;

b e g i n
__ r e g i s t e r
p r o c e s s (clk, reset)
b e g i n

20 i f (reset=’l’) t h e n
r-reg <= (o t h e r s = > ’ O ’) ;

r-reg <= r-next;
e l s i f (clk’event and clk=’l’) t h e n

end i f ;
2s end p r o c e s s ;

_- n e x t - s t a t e l o g i c
r-next <= r-reg + 1;
_- o u t p u t l o g i c
q <= std-logic-vector(r-reg);

30 max-tick <= ’ 1 ’ when r-reg=(2**N-l) e l s e J O J ;
end arch;

~ ~~~

The next-state logic is an incrementor, which adds 1 to the register’s current value. By
definition of the + operator in the IEEE numeric-std package, the operation implicitly
wraps around after the r - reg reaches ’’ 1. . .1”. The circuit also consists of an output status
signal, max-t ick, which is asserted when the counter reaches the maximal value, ” 1. . . 1
(which is equal to 2N - 1).

The max-t i ck signal represents a special type of signal that is asserted for a single clock
cycle. In this book, we call this type of signal a tick and use the suffix - t i ck to indicate a
signal with this property. It is commonly used to interface with the enable signal of other
sequential circuits.

Universal binary counter A universal binary counter is more versatile. It can count up
or down, pause, be loaded with a specific value, or be synchronously cleared. Its functions
are summarized in Table 4.1. Note the difference between the r e s e t and syn-clr signals.
The former is asynchronous and should only be used for system initialization. The latter is
sampled at the rising edge of the clock and can be used in normal synchronous design. The
code for this counter is shown in Listing 4.10.

Listing 4.10 Universal binary counter

l i b r a r y ieee;
use ieee.std-logic-ll64.all;
use ieee . numeric-std. a l l ;
e n t i t y univ-bin-counter i s

SIMPLE DESIGN EXAMPLES 83

i g e n e r i c (N : integer : = 8) ;

p o r t (
clk, reset: i n std-logic;
syn-clr , load, en, up: i n std-logic;
d : i n std-logic-vector (N - 1 downto 0) ;

q : o u t std-logic-vector (N - 1 d o w n t o 0)
I (1 max-tick, min-tick: o u t std-logic;

) ;
e n d univ-bin-counter;

15 a r c h i t e c t u r e arch of univ-bin-counter i s
s i g n a l r-reg : unsigned (N - 1 downto 0) ;
s i g n a l r-next : unsigned (N - 1 downto 0) ;

__ r e g i s t e r

b e g i n

b e g i n

20 p r o c e s s (clk, reset)

i f (reset=’l’) t h e n

e l s i f (clk’event a n d clk=’l’) t h e n

e n d i f ;
e n d p r o c e s s ;
__ n e x t - s t a t e l o g i c
r-next <= (o t h e r s = > ’ O ’) when syn-clr=’l’ e l s e

r-reg <= (o t h e r s = > ’ O ’) ;

15 r-reg <= r-next;

30 unsigned (d) when load= 1 ’ e l s e
r-reg f 1 when en = J l ’ a n d up=’l’ e l s e
r-reg - 1 when en = ’ i ’ a n d up=’O’ e l s e
r-reg ;

__ o u t p u t l o g i c

max-tick <= ’ 1 ’ when r-reg=(2**N-l) e l s e ’ O J ;
min-tick <= ’ 1 ’ when r-reg=O e l s e ’ 0 ’ ;

35 q <= std-logic-vector (r-reg) ;

e n d arch;

The next-state logic follows the function table and uses a conditional signal assignment to
prioritize the desired operations.

Mod- counter A mod-m counter counts from 0 to m - 1 and wraps around. A
parameterized mod-m counter is shown in Listing 4.11. It has two generics. One is M,
which specifies the limit, m , and the other is N, which specifies the number of bits needed
and should be equal to /log, M I . The code is shown in Listing 4.11, and the default value
is for a mod- 10 counter.

Listing 4.11 Mod-m counter

l i b r a r y ieee;
u s e ieee.std-logic-ll64,all;
u s e ieee . numeric-std. a l l ;
e n t i t y mod-m-counter i s

5 g e n e r i c (
N: integer : = 4; -- n u m b e r o f b i t s
M : integer : = 10 -- m o d 4

) ;

84 REGULAR SEQUENTIAL CIRCUIT

p o r t (
10 clk, reset: i n std-logic;

max-tick: ou t std-logic;
q : o u t std-logic-vector (N - 1 downto 0)

) ;
end mod-m-counter ;

a r c h i t e c t u r e arch of mod-m-counter i s
15

s i g n a l r-reg : unsigned (N - 1 downto 0) ;
s i g n a l r-next : unsigned (N - 1 downto 0) ;

begin
20 -- r e g i s t e r

25

p r o c e s s (clk, reset)
begin

if (reset=’l’) t h e n

e l s i f (clk’event and clk=’l’) t hen

end i f ;

r-reg <= (o t h e r s = > ’ O ’) ;

r-reg <= r-next;

end p r o c e s s ;
__ n e x t - s t a t e l o g i c

30 r-next <= (o t h e r s = > ’ O ’) when r-reg=(M-l) e l s e
r-reg + 1 ;

__ o u t p u t l o g i c
q <= std-logic-vector(r-reg);
max-tick <= ’ 1 ’ when r-reg=(M-l) e l s e ’ 0 ’ ;

is end arch;

The next-state logic is constructed by a conditional signal assignment statement. If the
counter reaches M-1, the new value is cleared to 0. Otherwise, it is incremented by 1.

Inclusion of the N parameter in the code is somewhat redundant since its value depends
on M. A more elegant way is to define a function that calculates N from M automatically. In
VHDL, this can be done by creating a user-definedfuncrion in a package and invoking the
package before the entity declaration. This is beyond the scope of this book and the details
may be found in the references cited in the Bibliographic section.

4.4 TESTBENCH FOR SEQUENTIAL CIRCUITS

A testbench is a program that mimics a physical lab bench, as discussed in Section 1.4.
Developing a comprehensive testbench is beyond the scope of this book. We discuss a
simple testbench for the previous universal binary counter in this section. It can serve as a
template for other sequential circuits. The code for the testbench is shown in Listing 4.12.

Listing 4.12 Testbench for a universal binarv counter

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;

e n t i t y bin-counter-tb i s
5 end bin-counter-tb;

a r c h i t e c t u r e arch of bin-counter-tb i s

TESTBENCH FOR SEQUENTIAL CIRCUITS 85

c o n s t a n t THREE: integer : = 3 ;
c o n s t a n t T : time : = 2 0 n s ; -- c l k p e r i o d

1 0 s i g n a l clk, reset: std-logic;
s i g n a l syn-clr , load, en, u p : std-logic;
s i g n a l d : std-logic-vector (T H R E E - 1 downto 0) ;
s i g n a l max-tick , min-tick: std-logic ;
s i g n a l q : std-logic-vector (T H R E E - 1 downto 0) ;

I S begin

50

S 5

60

__ .
__ i n s t a n t i a t i o n

counter-unit : e n t i t y work. univ-bin-counter (arch)
__ .

g e n e r i c map (N = > THREE)
port map(clk=>clk, reset=>reset , syn-clr=>syn-clr ,

load=>load, en=>en, u p = > u p , d=>d,
max-tick=>max-tick, min-tick=>min-tick, q = > q) ;

__ .
__ c l o c k

-- 2 0 n s c l o c k r u n n i n g f o r e v e r
p r o c e s s
begin

_- .

clk <= ’ 0 ’ ;
wai t f o r T / 2 ;
clk <= ’ 1 ’ ;
wait f o r T / 2 ;

end p r o c e s s ;

r e s e t
__ .
__

__ .
__ r e s e t a s s e r t e d f o r T / 2
reset <= ’ l ’ , ’ 0 ’ a f t e r T / 2 ;

__ .
__ o t h e r s t i m u l u s

p r o c e s s
begin

__ .

-_ .
__ i n i t i a 1 i n p u t

syn-clr <= ’ 0 ’ ;
load <= ’ 0 ’ ;

up <= > I > ; -- c o u n t up
d <= (o t h e r s = > ’ O ’) ;
wa i t u n t i l falling-edge (clk) ;
wait u n t i l falling-edge (clk) ;

__ t e s t l o a d

load <= ’1’:

__ .

en <= ’ 0 ’ ;

__ .

__ .

86 REGULAR SEQUENTIAL CIRCUIT

65

70

75

80

85

90

95

I00

105

I to

d <= "011";
w a i t u n t i l falling-edge (clk) ;
load <= '0';
-- p a u s e 2 c l o c k s
w a i t u n t i l falling-edge(clk);
w a i t u n t i l falling-edgecclk) ;

_- t e s t s y n - c l e a r

syn-clr <= '1'; -- c l e a r
w a i t u n t i l falling-edge (clk);
syn-clr <= '0';

_- t e s t up c o u n t e r and p a u s e

en <= '1'; -- c o u n t
up <= '1';
f o r i i n 1 t o 1 0 l o o p -- c o u n t 1 0 c l o c k s

end l o o p ;
en < = ' O ' ;
w a i t u n t i l f alling-edge (clk) ;
w a i t u n t i l f alling-edge (clk) ;
en <='I>;
w a i t u n t i l falling-edge(clk);
w a i t u n t i l falling-edge (clk);

__ .

_- .

__ .

__ .

w a i t u n t i l falling-edge (clk) ;

__ .
t e s t down c o u n t e r __

__ .
up <= '0';
f o r i i n 1 t o 10 l o o p -- r u n 1 0 c l o c k s

end l o o p ;

__ o t h e r w a i t c o n d i t i o n s

__ c o n t i n u e until q=2
w a i t u n t i l q="010";
w a i t u n t i l falling-edge (clk);
up <= '1';

__ c o n t i n u e u n t i l m i n - t i c k c h a n g e s v a l u e
w a i t on min-tick;
w a i t u n t i l falling-edge (clk) ;
up <= '0';
w a i t f o r 4*T; -- w a i t f o r 8 0 12s
en <= ' 0 ' ;
w a i t f o r 4*T;

__ t e r m i n a t e s i m u l a t i o n

a s s e r t false
r e p o r t 'I S i mu 1 at i on C o mp 1 e t e d "

w a i t u n t i l falling-edge (clk) ;

__ .

__ .

_- .

__ .

s e v e r i t y failure;

TESTBENCH FOR SEQUENTIAL CIRCUITS 87

end p r o c e s s ;
115 end arch;

The code consists of a component instantiation statement, which creates an instance of
a 3-bit counter, and three segments, which generate a stimulus for clock, reset, and regular
inputs. Since operation of a synchronous system is synchronized by a clock signal, we
define a constant with the built-in data type time for the clock period:

c o n s t a n t T : time : = 2 0 ns; -- c l k p e r i o d

The clock generation is specified by a process:

p r o c e s s
beg in

clk <= ’ 0 ’ ;
wai t f o r T / 2 ;
clk <= ’1’;
wai t f o r T / 2 ;

end p r o c e s s ;

The clk signal is assigned between ’0’ and ’ 1 ’ alternatively, and each value lasts for half a
period. Note that the process has no sensitivity list and repeats itself forever.

The reset stimulus involves one statement,

reset <= ’ I > , ’ 0 ’ a f t e r T / 2 ;

It indicates that the r e s e t signal is set to ’ 1’ initially and changed to ’0’ after half a period.
The statement represents the “power-on” condition, in which the r e s e t signal is asserted
momentarily to clear the system to the initial state. Note that, by default, the ’U’ value (for
uninitialized), not ’ 0 ’, is assigned to a signal with the s td- logic type. Using a short reset
pulse is a good mechanism to perform system initialization.

The last process statement generates a stimulus for other input signals. We first test
the load and clear operations and then exercise counting in both directions. The final
assert false statement forces the simulator to terminate simulation, as discussed in Sec-
tion 2.7.

For a synchronous system with positive edge-triggered FFs, an input signal must be stable
around the rising edge of the clock signal to satisfy the setup and hold time constraints. One
easy way to achieve this is to change an input signal’s value during the ’1’-to-’0’ transition
of the c l k signal. The f al l ing-edge function of the std-logic-1164 package checks
this condition, and we can use it in a wait statement:

wai t u n t i l falling-edge (clk) ;

Note that each statement represents a new falling edge, which corresponds to the advance-
ment of one clock cycle. In our template, we generally use this statement to specify the
progress of time. For multiple clock cycles, we can use a loop statement:

f o r i in 1 to 10 l oop -- c o u n t 1 0 c l o c k s

end l o o p ;
wa i t u n t i l falling-edge (clk) ;

There are other useful forms of wait statements, as shown at the end of the process. We
can wait until a special condition, such as “when q is equal to 2”,

wait u n t i l q = ” O l O ” ;

or wait until a signal changes, such as

88 REGULAR SEQUENTIAL CIRCUIT

reset
I t

Figure 4.4 Testbench waveform.

w a i t on m i n - t i c k ;

or wait for an absolute time, such as

w a i t for 4*T; -- w a i t f o r 4 c l o c k p e r i o d s

If an input signal is modified after these statements, we need to make sure that the input
change does not occur at the rising edge of the clock. An additional

w a i t u n t i l falling-edge(clk);

statement should be added when needed.

shown in Figure 4.4.
We can compile the code and perform simulation. Part of the simulated waveform is

4.5 CASE STUDY

After examining several simple circuits, we discuss the design of more sophisticated exam-
ples in this section.

4.5.1 LED time-multiplexing circuit

The S3 board has four seven-segment LED displays, each containing seven bars and one
small round dot. To reduce the use of FPGA's I/O pins, the S3 board uses a time-multiplexing
sharing scheme. In this scheme, the four displays have their individual enable signals but
share eight common signals to light the segments. All signals are active-low (i.e., enabled
when a signal is '0 ') . The schematic of displaying '3' on the rightmost LED is shown in
Figure 4.5. Note that the enable signal (i.e., an) is "1 110". This configuration clearly can
enable only one display at a time. We can time-multiplex the four LED patterns by enabling
the four displays in turn, as shown in the simplified timing diagram in Figure 4.6. If the
refreshing rate of the enable signal is fast enough, the human eye cannot distinguish the
on and off intervals of the LEDs and perceives that all four displays are lit simultaneously.
This scheme reduces the number of I/O pins from 32 to 12 (i.e., eight LED segments plus
four enable signals) but requires a time-multiplexing circuit. Two variations of the circuit
are discussed in the following subsections.

CASESTUDY 89

an0

an1

a ,.-,.

I

an3 an2 an1 an0
1 1 1 0

Figure 4.5 Time-multiplexed seven-segment LED display.

Figure 4.6 Timing diagram of a time-multiplexed seven-segment LED display.

90 REGULAR SEQUENTIAL CIRCUIT

/

18

disp-mux

q-reg (17.,16)
q-next q-reg

+I d 9 , ’ - 2 , ’

18 18 2
>clk

(a) Symbol

sseg in2
in3

/
I I

clk

reset

(b) Block diagram

Figure 4.7 Symbol and block diagram of a time-multiplexing circuit.

Time multiplexing with LED patterns The symbol and block diagram of the time-
multiplexing circuit are shown in Figure 4.7. It takes four seven-segment LED patterns,
in3, in2, ini, and inO, and passes them to the output, sseg, in accordance with the enable
signal.

The refresh rate of the enable signal has to be fast enough to fool our eyes but should
be slow enough so that the LEDs can be turned on and off completely. The rate around the
range 1000 Hz should work properly. In our design, we use an 18-bit binary counter for
this purpose. The two MSBs are decoded to generate the enable signal and are used as the
selection signal for multiplexing. The refreshing rate of an individual bit, such as an (0) ,
becomes W H z , which is about 800 Hz. The code is shown in Listing 4.13.

Listing 4.13 LED time-multiplexing circuit with LED patterns

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y disp-mux i s

5 p o r t (
clk, reset: i n std-logic;
in3, in2, inl, inO: i n std-logic-vsctor(7 downto 0) ;
an: out std-logic-vector (3 downto 0) ;
sseg : o u t std-logic-vector (7 downto 0)

10 1 ;
end disp-mux ;

CASESTUDY 91

a r c h i t e c t u r e arch of disp-mux i s
_- r e f r e s h i n g r a t e a r o u n d 8 0 0 H z (5 0 M H z / 2 ^ 1 6)

s i g n a l q-reg , q-next : unsigned (N - 1 downto 0) ;
s i g n a l sel: std-logic-vector (1 downto 0) ;

__ r e g i s t e r

beg in

1 5 c o n s t a n t N : integer :=18;

beg in

20 p r o c e s s (clk, reset)

i f reset='l' then

e l s i f (clk'event and clk='l') then

end i f ;
end p r o c e s s ;

q-reg <= (o t h e r s = > ' O ') ;

q-reg <= q-next;

-_ n e x t - s t a t e l o g i c f o r t h e c o u n t e r
30 q-next <= q-reg + 1 ;

-- 2 MSBs o f c o u n t e r t o c o n t r o l 4 - t o - I m u l t i p l e x i n g
__ and t o g e n e r a t e a c t i v e - l o w e n a b l e s i g n a l
sel <= std-logic-vector(q-reg(N-1 downto N-2)) ;
p r o c e s s (sel , inO, in1 , in2, in3)
beg in

3~

case sel i s
when " 0 0 " = >

an <= "1110";
40 sseg <= inO;

when " 0 1 " = >
an <= "1101";
sseg <= inl;

when "10" = >
44 an <= "1011";

sseg <= in2;

an <= "0111";
sseg <= in3;

when o t h e r s = >

5 0 end c a s e ;
end p r o c e s s ;

end arch;

We use the testing circuit in Figure 4.8 to verify operation of the LED time-multiplexing
circuit. It uses four 8-bit registers to store the LED patterns. The registers use the same
8-bit switch as input but are controlled by individual enable signal. When we press a button,
the corresponding register is enabled and the switch pattern is loaded to that register. The
code is shown in Listing 4.14.

Listing 4.14 Testing circuit for time multiplexing with LED patterns

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y disp-mux-test i s

5 p o r t (

92 REGULAR SEQUENTIAL CIRCUIT

sw -
btn(0)

4-d
btn(1) ~

4-

btn(2)

-d
btn(3)

d q
en

>

q
en in0 sseg sseg

> in1 an an
in2 - in3

d q disp-mux

en

> reset

4
en

>

Figure 4.8 LED time-multiplexing testing circuit.

clk: in std-logic;
btn: in std-logic-vector (3 downto 0) ;
sw: i n std-logic-vector (7 downto 0) ;
an: out std-logic-vector (3 downto 0) ;

10 sseg : out std-logic-vector (7 downto 0)

1 ;
end disp-mux-test ;

a r c h i t e c t u r e arch
1 5 s i g n a l d3_reg,

s i g n a l dl-reg ,

disp-unit : e n t
port map(

clk=>clk

beg in

20

30

of disp-mux-test i s
d2-reg: std-logic-vector (7 downto 0) ;
do-reg : std-logic-vector (7 downto 0) ;

t y work. disp-mux

reset => ’ 0 ’ ,
in3=>d3_reg, in2=>d2_reg, inl=>dl-reg,
inO=>dO-reg, an=>an, sseg=>sseg) ;

__ r e g i s t e r s f o r 4 l e d p a t t e r n s
p r o c e s s (clk)

25 beg in
i f (clk’event and clk=’l’) then

i f (btn(3)=’1’) then

end i f ;
i f (btn(2)=’l’) then

end i f ;
i f (btn(l)=’l’) then

d3-reg <= s w ;

d2-reg <= sw;

dl-reg <= s w ;

CASESTUDY 93

/ + I
18

,
/ 4

hexO
hexl
hex2 /

/ 4

q-next q-reg
q-reg (17,.16) d q 1 ’ - = / ’

18 18 2
>clk

elk

reset
2-to-4

1

- decoder /

Figure 4.9 Block diagram of a hexadecimal time-multiplexing circuit.

35 end i f ;
i f (btn(O)=’l’) then

end i f ;
do-reg <= s w ;

end i f ;
40 end p r o c e s s ;

end arch;

an

Time multiplexing with hexadecimal digits The most common application of a
seven-segment LED is to display a hexadecimal digit. The decoding circuit is discussed
in Section 3.7.1. To display four hexadecimal digits with the previous time-multiplexing
circuit, four decoding circuits are needed. A better alternative is first to multiplex the
hexadecimal digits and then decode the result, as shown in Figure 4.9.

This scheme requires only one decoding circuit and reduces the width of the 4-to-1
multiplexer from 8 bits to 5 bits (i.e., 4 bits for the hexadecimal digit and 1 bit for the
decimal point). The code is shown in Listing 4.15. In addition to clock and reset, the input
consists of four 4-bit hexadecimal digits, hex3, hex2, hexl, and hex0, and four decimal
points, which are grouped as one signal, dp-in.

Listing 4.15 LED time-multiplexing circuit with hexadecimal digits

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y disp-hex-mux i s

5 p o r t (
clk, reset: i n std-logic;
h e x 3 , hex2, hexl , hexO: i n std-logic-vector (3 downto 0) ;
dp-in : i n std-logic-vector (3 downto 0) ;
an: o u t std-logic-vector (3 downto 0) ;

10 sseg : o u t std-logic-vector (7 downto 0)

) ;
end disp-hex-mux ;

94 REGULAR SEQUENTIAL CIRCUIT

a r c h i t e c t u r e arch of disp-hex-mux i s
i s -- e a c h 7 - s e g l e d e n a b l e d (2 ^ 1 8 / 4) * 2 . 5 n s (4 0 m s)

c o n s t a n t N: integer :=18;
s i g n a l q-reg , q-next : unsigned (N-1 downto 0) ;
s i g n a l sel : std-logic-vector (1 downto 0) ;
s i g n a l hex: std-logic-vector (3 downto 0) ;

20 s i g n a l dp: std-logic;
begin

-- r e g i s t e r
p r o c e s s (clk , reset)
beg in

25 i f reset='l' then
q-reg <= (o t h e r s = > ' 0 ') ;

q-reg <= q-next;
e l s i f (clk'event and clk='l') then

end i f ;
30 end p r o c e s s ;

-- n e x t - s t a t e l o g i c for t h e c o u n t e r
q-next <= q-reg + 1 ;

45

50

60

65

35 -- 2 MSBs o f c o u n t e r t o c o n t r o l 4 - t o - l m u l t i p l e x i n g
sel <= std-logic-vector (q-reg"-1 downto N-2)) ;
p r o c e s s (sel , hex0 , hexl , hex2, hex3, dp-in)
beg in

c a s e sel i s
40 when "00" =>

an <= " 1 1 1 0 " ;
hex <= hex0;
dp <= dp-in(0);

an <= " 1 1 0 1 " ;
hex <= hexl;
dp <= dp-in(l);

an <= ' ~ 1 0 1 1 " ;
hex <= hex2;
dp <= dp-in(2);

an <= " 0 1 1 1 " ;
hex <= hex3;

when " 0 1 " =>

when " 1 0 " =>

when o t h e r s =>

5s dp <= dp-in(3);
end c a s e ;

end p r o c e s s ;
-_ hex - t o - 7- s e g in e IZ t I e d d e c o d i n g
with hex s e l e c t

sseg(6 downto 0) <=
t ' O O O O O O 1 I' when " 0 0 0 0 " ,
I' 1 0 0 1 1 1 1 (' when " 0 0 0 1 I' ,
" 0 0 1 0 0 1 0 " when " 0 0 1 0 " ,
~ ~ 0 0 0 0 ~ 1 0 " when " 0 0 1 1 " ,
t ~ l O O ~ ~ O O " when "OIOO",

CASESTUDY 95

7u

75

'I 0 1 0 0 100 It when I' 0 10 1 'I ,
'' 0 100000 I' when 'I 0 1 10 'I ,
'I 0 0 0 1 1 1 1 'I when It 0 1 1 1 I' ,
r l O O O O O O O 1 t when t l l O O O 1 t ,
" 0 0 0 0 1 0 0 " when " 1 0 0 1 " ,
" 0 0 0 1 0 0 0 " when " 1 0 1 0 " , --a
" 1 1 0 0 0 0 0 " when " 1 0 1 1 " , -4
t t O 1 l O O O 1 l t when " 1 1 0 0 " , --c
" 1 0 0 0 0 1 0 " when " 1 1 0 1 " , --d
" 0 1 1 0 0 0 0 " when "1110", --e
" 0 1 1 1 0 0 0 " when o t h e r s ; --f

-_ d e c i m a l p o i n t
sseg(7) <= dp;

end arch;

To verify operation of this circuit, we define the 8-bit switch as two 4-bit unsigned
numbers, add the two numbers, and show the two numbers and their sum on the four-digit
seven-segment LED display. The code is shown in Listing 4.16.

Listing 4.16

l i b r a r y ieee;
u s e ieee. std-logic-1164. a l l ;
u s e ieee. numeric-std. a l l ;
e n t i t y hex-mux-test i s

Testing circuit for time multiplexing with hexadecimal digits

5 p o r t (
clk: i n std-logic;
sw: i n std-logic-vector (7 downto 0) ;
an: o u t std-logic-vector (3 downto 0) ;
sseg : o u t std-logic-vector (7 downto 0)

10) ;
end hex-mux-test;

a r c h i t e c t u r e arch of hex-mux-test i s
s i g n a l a , b: unsigned(7 downto 0) ;

15 s i g n a l sum: std-logic-vector (7 downto 0) ;
b e g i n

disp-unit : e n t i t y work. disp-hex-mux
p o r t map(

clk=>clk, reset=>'O',
20 hex3=>sum(7 downto 4), hex2=>sum(3 downto 0) ,

hexl=>sw(7 downto 4), hexO=>sw(3 downto 0 1 ,
dp-in=>"lOll" , an=>an, sseg=>sseg) ;

a <= " 0 0 0 0 " & unsigned(sw(3 downto 0)) ;
b <= "0000" & unsigned(sw(7 downto 4));

2 5 sum <= std-logic-vector(a + b);
end arch;

Simulation consideration Many sequential circuit examples in the book operate at a
relatively slow rate, as does the enable pulse of the LED time-multiplexing circuit. This
can be done by generating a single-clock enable tick from a counter. An 18-bit counter is
used in this circuit:

c o n s t a n t N : integer : =18;

96 REGULAR SEQUENTIAL CIRCUIT

s i g n a l q-reg , q-next : unsigned (N - 1 downto 0) ;

q-next (= g-reg + 1 ;
. . .

Because of the counter's size, simulating this type of circuit consumes a significant amount
of computation time (i.e., 218 clock cycles for one iteration). Since our main interest is in
the multiplexing part of the code, most simulation time is wasted. It is more efficient to use
a smaller counter in simulation. We can do this by modifying the constant statement

c o n s t a n t N : integer : = 4 ;

when constructing the testbench. This requires only 2* clock cycles for one iteration and
allows us to better exercise and observe the key operations.

Instead of using a constant statement and modifying code between simulation and syn-
thesis, an alternative is to define a generic for the relevant parameter. During instantiation,
we can assign different values for simulation and synthesis.

4.5.2 Stopwatch

We consider the design of a stopwatch in this subsection. The watch displays the time in
three decimal digits, and counts from 00.0 to 99.9 seconds and wraps around. It contains
a synchronous clear signal, clr, which returns the count to 00.0, and an enable signal,
go, which enables and suspends the counting. This design is basically a BCD (binary-
coded decimal) counter, which counts in BCD format. In this format, a decimal number is
represented by a sequence of 4-bit BCD digits. For example, 13910 is represented as "0001
001 1 1001" and the next number in sequence is 14O1o, which is represented as "0001 0100
0000".

Since the S3 board has a 50-MHz clock, we first need a mod-5,000,000 counter that
generates a one-clock-cycle tick every 0.1 second. The tick is then used to enable counting
of the three-digit BCD counter.

Design I Our first design of the BCD counter uses a cascading structure of three decade
(i.e., mod-10) counters, representing counts of 0.1, 1, and 10 seconds, respectively. The
decade counter has an enable signal and generates a one-clock-cycle tick when it reaches 9.
We can use these signals to "hook" the three counters. For example, the 10-second counter
is enabled only when the enable tick of the mod-5,000,000 counter is asserted and both the
0.1- and I-second counters are 9. The code is shown in Listing 4.17.

Cascading description for a stopwatch Listing 4.17

l i b r a r y ieee;
use ieee . std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y stop-watch i s

z p o r t (
c l k : in std-logic;
g o , clr: i n std-logic;
d2, d l , do: out std-logic-vector (3 downto 0)

) ;
10 end stop-watch;

a r c h i t e c t u r e cascade-arch of stop-watch i s
c o n s t a n t DVSR: integer : =5000000;

CASESTUDY 97

s i g n a l ms-reg , ms-next : unsigned (22 d o w n t o 0) ;

s i g n a l d2-next , dl-next , do-next : unsigned (3 d o w n t o 0) ;
s i g n a l dl-en , d2_en, dO-en: std-logic;
s i g n a l ms-tick , do-tick, dl-tick: std-logic ;

15 s i g n a l d2_reg, dl-reg , do-reg : unsigned (3 d o w n t o 0) ;

b e g i n
20

40

60

__ r e g i s t e r
p r o c e s s (clk)
b e g i n

i f (clk ’ event a n d clk= ’ 1 ’) t h e n
ms-reg <= ms-next;
d2-reg <= d2-next;
dl-reg <= dl-next;
do-reg <= do-next;

e n d i f ;
e n d p r o c e s s ;

__ n e x t - s t a t e l o g i c
__ 0 . 1 s e e t i c k g e n e r a t o r : mod-5000000
ms-next <=

(o t h e r s = > ’ O ’) when clr=’l’ or

ms-reg + 1 when go=’l’ e l s e
ms-reg ;

(ms-reg=DVSR a n d go=’l’) e l s e

ms-tick <= ’1’ when ms-reg=DVSR e l s e ’ 0 ’ ;
__ 0 . 1 s e e c o u n t e r
d0-en <= ’1’ when ms-tick=’l’ e l s e ’ 0 ’ ;
do-next <=

“ 0 0 0 0 ” when (clr=’l ’) o r (dO-en=’l’ a n d dO_reg=9) e l s e
do-reg + 1 when dO-en=’l’ e l s e
do-reg ;

do-tick <= ’1’ when dO_reg=9 e l s e ’ 0 ’ ;
__ I s e e c o u n t e r
dl-en <= ’ 1 ’ when ms-tick=’l’ a n d dO-tick=’l’ e l s e
dl-next <=

“ 0 0 0 0 ” when (clr=’l’) o r (dl-en=’l’ a n d dl_reg=9
dl-reg + 1 when dl-en=’l’ e l s e
dl-reg ;

dl-tick <= ’1’ when dl_reg=9 e l s e ’ 0 ’ ;
_- I 0 s e e c o u n t e r
d2-en <=

0 ’ ;

e l s e

’1’ when ms-tick=’l’ a n d dO-tick=’l’ a n d dl-tick=’l’ e l s e
’0’;

“ 0 0 0 0 ” when (clr=’l’) o r (d2_en=’l’ a n d d2_reg=9) e l s e
d2-reg + 1 when d2_en=’l’ e l s e
d2-reg ;

d2-next <=

__ o u t p u t l o g i c
dO <= std-logic-vector (dO-reg) ;
dl <= std-logic-vector(dl-reg);
d2 <= std-logic-vector(d2-reg);

end cascade-arch;

98 REGULAR SEQUENTIAL CIRCUIT

Note that all registers are controlled by the same clock signal. This example illustrates
how to use a one-clock-cycle enable tick to maintain synchronicity. An inferior approach
is to use the output of the lower counter as the clock signal for the next stage. Although it
may appear to be simpler, it violates the synchronous design principle and is a very poor
practice.

Design /I An alternative for the three-digit BCD counter is to describe the entire structure
in a nested if statement. The nested conditions indicate that the counter reaches .9,9.9, and
99.9 seconds. The code is shown in Listing 4.18.

Listing 4.18 Nested if-statement description for a stopwatch

a r c h i t e c t u r e if-arch of stop-watch i s
c o n s t a n t DVSR: integer : = 5 0 0 0 0 0 0 ;
s i g n a l ms-reg , ms-next : unsigned (22 downto 0) ;
s i g n a l d2_reg, dl-reg , dO-reg: unsigned (3 downto 0) ;

s i g n a l ms-tick: std-logic;

-_ r e g i s t e r
p r o c e s s (clk)

5 s i g n a l dz-next, dl-next , do-next : unsigned(3 downto 0) ;

beg in

1 0 beg in
i f (clk event and clk= ’ 1 ’ then

ms-reg <= ms-next;
d2-reg <= d2-next;
dl-reg <= dl-next;
do-reg <= do-next;

end i f ;
end p r o c e s s ;

I 5

25

30

40

_- n e x t - s t a t e l o g i c

ms-next <=
20 -- 0 . 1 s e c t i c k g e n e r a t o r : mod-5000000

(o t h e r s = > ’0 ’) when clr=’l’ or

ms-reg + 1 when go=’l’ e l s e
ms-reg ;

(ms-reg=DVSR and go= ’ 1 ’) e l s e

ms-tick <= ’ 1 ’ when ms-reg=DVSR e l s e ’ 0 ’ ;
-- 3 - d i g i t i n c r e m e n t o r
p r o c e s s (do-reg , dl-reg ,d2_reg ,ms-tick, clr)
beg in

-- d e f a u l t
do-next <= do-reg;
dl-next <= dl-reg;
d2-next <= d2-reg;
i f clr= ’ 1 ’ then

do-next <= ”0000”;
dl-next <= ”0000”;
d2-next <= ”0000”;

e l s i f ms-tick=’l ’ then
i f (dO_reg/=9) then

do-next <= do-reg + 1 ;
e l s e -- r e a c h X X 9

do-next <= “0000“;

CASESTUDY 99

i f (dl_reg/=9) then
dl-next <= dl-reg + 1;

dl-next <= "0000";
i f (d2_reg/=9) then

e l s e -- r e a c h 9 9 9

end i f ;

15 e l s e -- r e a c h X 9 9

d2-next <= d2-reg + 1 ;

50 d2-next <= "0000";

end i f ;
end i f ;

end i f ;
5 s end p r o c e s s ;

__ o u t p u t l o g i c
dO <= std-logic-vector(d0-reg);
dl <= std-logic-vector(dl-reg);
d2 <= std-logic-vector (d2-reg) ;

M) end if -arch;

Verification circuit To verify operation of the stopwatch, we can combine it with the
previous hexadecimal LED time-multiplexing circuit to display the output of the watch.
The code is shown in Listing 4.19. Note that the first digit of the LED is assigned to 0 and
the go and c l r signals are mapped to two buttons of the S3 board.

Listing 4.19 Testing circuit for a stopwatch

l i b r a r y ieee;
use ieee . std-logic-1164. a l l ;
e n t i t y stop-watch-test i s

por t (
5 clk: in std-logic;

btn: in std-logic-vector (3 downto 0) ;
an: out std-logic-vector (3 downto 0) ;
sseg : out std-logic-vector (7 downto 0)

) ;
10 end stop-watch-test;

a r c h i t e c t u r e arch of stop-watch-test i s

beg in
s i g n a l d2, dl , dO : std-logic-vector (3 downto 0) ;

1 5 disp-unit : e n t i t y work. disp-hex-mux
port map(

clk=>clk, reset=>'O',
hex3=>"0000" , hex2=>d2,
hexl=>dl , hexO=>dO,
dp-in=>" 1 1 0 1 " , an=>an, sseg=>sseg) ; 20

watch-unit : e n t i t y work. stop-watch(cascade-arch)
port map(

clk=>clk, go=>btn(l) , clr=>btn(O),
2 s d2 =>d2, dl=>dl, dO=>dO) ;

end arch;

100 REGULAR SEQUENTIAL CIRCUIT

FIFO buffer

from FIFO
data written
into FIFO

data read

Figure 4.10 Conceptual diagram of a FIFO buffer.

4.5.3 FIFO buffer

A FIFO (first-in-first-out) buffer is an “elastic” storage between two subsystems, as shown
in the conceptual diagram of Figure 4.10. It has two control signals, w r and rd, for write
and read operations. When w r is asserted, the input data is written into the buffer. The
read operation is somewhat misleading. The head of the FIFO buffer is normally always
available and thus can be read at any time. The rd signal actually acts like a “remove”
signal. When it is asserted, the first item (i.e., head) of the FIFO buffer is removed and the
next item becomes available.

FIFO buffer is a critical component in many applications and the optimized implemen-
tation can be quite complex. In this subsection, we introduce a simple, genuine circular-
queue-based design. More efficient, device-specific implementation can be found in the
Xilinx literature.

Circular-queue-based implementation One way to implement a FIFO buffer is to
add a control circuit to a register file. The registers in the register file are arranged as a
circular queue with two pointers. The write pointer points to the head of the queue, and the
readpointer points to the tail of the queue. The pointer advances one position for each write
or read operation. The operation of an eight-word circular queue is shown in Figure 4.11.

A FIFO buffer usually contains two status signals, full and empty, to indicate that the
FIFO is full (i.e., cannot be written) and empty (i.e., cannot be read), respectively. One of
the two conditions occurs when the read pointer is equal to the write pointer, as shown in
Figure 4.11(a), (f), and (i). The most difficult design task of the controller is to derive a
mechanism to distinguish the two conditions. One scheme is to use two FFs to keep track
of the empty and full statuses. The FFs are set to ’ 1 ’ and ’0’ during system initialization
and then modified in each clock cycle according to the values of the wr and rd signals. The
code is shown in Listing 4.20.

Listing 4.20 FIFO buffer

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y fifo i s

s g e n e r i c (
B: natural:=8; -- number of b i t s
W: natural:=4 -- number o f a d d r e s s b i t s

) ;
p o r t (

10 clk, reset: i n std-logic;
rd, wr: i n std-logic;

CASE STUDY 101

Figure 4.11 FIFO buffer based on a circular queue.

102 REGULAR SEQUENTIAL CIRCUIT

w-data: i n std-logic-vector (B - 1 d o w n t o 0) ;
empty, full : o u t std-logic;
r-data: o u t std-logic-vector (B - 1 d o w n t o 0)

I5 ;
e n d fifo:

a r c h i t e c t u r e arch of fifo i s
t y p e reg-file-type i s a r r a y (2**W-1 d o w n t o 0) of

20 std-logic-vector (B - 1 d o w n t o 0) ;
s i g n a l array-reg : reg-f ile-type ;
s i g n a l w-ptr-reg , w-ptr-next , w-ptr-succ :

s i g n a l r-ptr-reg , r-ptr-next , r-ptr-succ:

s i g n a l full-reg , empty-reg , full-next , empty-next :
std-logic;

s i g n a l wr-op: std-logic-vector (1 d o w n t o 0) ;
s i g n a l wr-en : std-logic ;

std-logic-vector (W-1 d o w n t o 0) ;

25 std-logic-vector (W - 1 d o w n t o 0) ;

30 b e g i n
__

__ r e g i s t e r f i l e
__

40

p r o c e s s (clk, reset)
3s b e g i n

i f (reset=’l ’) t h e n

e l s i f (clk’event a n d clk=’l’) t h e n
array-reg <= (o t h e r s = > (o t h e r s = > ’ 0 ’)) ;

i f wr-en=’l’ t h e n
array_reg(to-integer(unsigned(w-ptr-reg)))

<= w-data;
e n d i f ;

e n d i f ;
e n d p r o c e s s ;

4s -- r e a d p o r t
r-data <= array_reg(to-integer(unsigned(r-ptr-reg)));
__ w r i t e e n a b l e d o n l y when FIFO i s n o t f u l l
wr-en <= wr a n d (n o t full-reg);

50 --
-- f i f o c o n t r o l l o g i c

__ r e g i s t e r f o r r e a d a n d w r i t e p o i n t e r s
p r o c e s s (clk , reset)

__

55 b e g i n
i f (reset=’l’) t h e n

w-ptr-reg <= (o t h e r s = > ’ O ’) ;
r-ptr-reg <= (o t h e r s = > ’ O ’) ;
full-reg <= ’ 0 ’ ;
empty-reg <= ’ 1 ’ ;

w-ptr-reg <= w-ptr-next ;
r-ptr-reg <= r-ptr-next ;
full-reg <= full-next;

e l s i f (clk’event a n d clk=’l’) t h e n
60

CASE STUDY 103

65 empty-reg <= empty-next ;
end i f ;

end p r o c e s s ;

-- s u c c e s s i v e p o i n t e r v a l u e s
70 w-ptr-succ <= std-logic-vector (unsigned(w_ptr-reg)+l) ;

r-ptr-succ <= std-logic-vector(unsigned(r-ptr-reg)+l);

80

85

90

95

IW

-- n e x t - s t a t e logic f o r r e a d a n d w r i t e p o i n t e r s
wr-op <= wr k r d ;
p r o c e s s (w-ptr-reg, w-ptr-succ ,r-ptr-reg ,r-ptr-succ ,wr-op,

beg in

75

empty-reg , full-reg)

w-ptr-next <= w-ptr-reg;
r-ptr-next <= r-ptr-reg;
full-next <= full-reg;
empty-next <= empty-reg ;
c a s e wr-op i s

when " 0 0 " => -- n o o p
when "01" = > -- r e a d

i f (empty-reg /= '1') then -- n o t e m p t y
r-ptr-next <= r-ptr-succ;
full-next <= ' 0 ' ;
i f (r-ptr-succ=w-ptr-reg) then

end i f ;
empty-next <='l';

end i f ;

i f (full-reg / = ' 1 ') then -- n o t f u l l
when "10" = > -- w r i t e

w-ptr-next <= w-ptr-succ;
empty-next <= ' 0 ' ;
i f (w-ptr-succ=r-ptr-reg) then

end i f ;
full-next <='1';

end i f ;

w-ptr-next <= w-ptr-succ ;
r-ptr-next <= r-ptr-succ ;

when o t h e r s = > -- w r i t e / r e a d ;

end c a s e ;
end p r o c e s s ;

full <= full-reg;
empty <= empty-reg;

105 -- o u t p u t

end arch;

The code is divided into a register file and a FIFO controller. The controller consists of
two pointers and two status FFs. Its next-state logic examines the wr and rd signals and takes
actions accordingly. For example, let us consider the 'I 10" case, which implies that only a
write operation occurs. The status FF is checked first to ensure that the buffer is not full.
If this condition is met, we advance the write pointer by one position and clear the empty
status FF Storing one extra word to the buffer may make it full. This happens if the new
write pointer "catches" the read pointer, which is expressed by the w-ptr-succ=r-ptr-reg
expression.

104 REGULAR SEQUENTIAL CIRCUIT

Verification circuit The verification circuit examines the operation of a 24-by-3 FIFO
buffer. We use three switches to generate the input data and use two buttons for the w r
and rd signals. The 3-bit readout and the f u l l and empty status signals are displayed
in five discrete LEDs. Because of bounces of the mechanical contact, a debouncing cir-
cuit is needed to generate a clean, one-clock-cycle tick. The debouncing module, named
debounce, is discussed in Section 5.9 but for now can be treated as a predesigned mod-
ule. The original button inputs are b tn(0) and b t n (I), and the debounced signals are
db-btn(0) and db-btn(l) . The code is shown in Listing 4.21.

Listing 4.21 Testing circuit for a FIFO buffer

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y f i f o - t e s t i s

p o r t (
c l k , r e s e t : i n s t d - l o g i c ;
b t n : s t d - l o g i c - v e c t o r (1 downto 0) ;
sw: s t d - l o g i c - v e c t o r (2 downto 0) ;
l e d : out s t d - l o g i c - v e c t o r (7 downto 0)

1 ;
1 0 end f i f o - t e s t ;

a r c h i t e c t u r e a r c h o f f i f o - t e s t i s

beg in
s i g n a l d b - b t n : s t d - l o g i c - v e c t o r (1 downto 0) ;

15 -- d e b o u n c i n g c i r c u i t f o r b t n (0)
b t n - d b - u n i t 0 : e n t i t y work . debounce (f s r n d - a r c h)

p o r t m a p (c l k = > c l k , r e s e t = > r e s e t , s w = > b t n (O) ,
d b - l e v e l = > o p e n , d b - t i c k = > d b - b t n (0)) ;

-- d e b o u n c i n g c i r c u i t f o r b t n (l)
zo b t n - d b - u n i t 1 : e n t i t y work.debounce(fsrnd-arch)

p o r t m a p (c l k = > c l k , r e s e t = > r e s e t , s w = > b t n (l) ,
d b - l e v e l = > o p e n , d b - t i c k = > d b - b t n (1)) ;

-_ i n s t a n t i a t e a 2 ^ 2 - b y - 3 f i f o
f i f o - u n i t : e n t i t y w o r k . f i f o (a r c h)

25 g e n e r i c map(B=>3 , W=>2)
p o r t m a p (c l k = > c l k , r e s e t = > r e s e t ,

r d = > d b - b t n (0) , w r = > d b - b t n (1) ,
w-data=>sw , r - d a t a = > l e d (2 downto 0) ,
f u l l = > l e d (7) , e rnp ty=>led (6)) ;

30 -- d i s a b l e unused l e d s
l e d (5 downto 3) < = (o t h e r s = > ’ O ’) ;

end a r c h ;

4.6 BIBLIOGRAPHIC NOTES

The bibliographic information for this chapter is similar to that for Chapter 3.

SUGGESTED EXPERIMENTS 105

Figure 4.12 Pattern for Experiment 4.7.3.

4.7 SUGGESTED EXPERIMENTS

4.7.1 Programmable square wave generator

A programmable square wave generator is a circuit that can generate a square wave with
variable on (i.e,, logic ’ 1 ’) and off (i.e,, logic ’0’) intervals. The durations of the intervals are
specified by two 4-bit control signals, m and n, which are interpreted as unsigned integers.
The on and off intervals are m*100 ns and n*100 ns, respectively (recall that the period of
the S 3 onboard oscillator is 20 ns). Design a programmable square wave generator circuit.
The circuit should be completely synchronous. We need a logic analyzer or oscilloscope
to verify its operation.

4.7.2 PWM and LED dimmer

The duty cycle of a square wave is defined as the percentage of the on interval (i.e., logic
’ 1 ’) in a period. A PWM (pulse width modulation) circuit can generate an output with
variable duty cycles. For a PWM with 4-bit resolution, a 4-bit control signal, w, specifies
the duty cycle. The w signal is interpreted as an unsigned integer and the duty cycle is 5.

1. Design a PWM circuit with 4-bit resolution and verify its operation using a logic
analyzer or oscilloscope.

2. Modify the LED time-multiplexing circuit to include the PWM circuit for the an
signal. The PWM circuit specifies the percentage of time that the LED display is
on. We can control the perceived brightness by changing the duty cycle. Verify the
circuit’s operation by observing 1 bit of an on a logic analyzer or oscilloscope.

3. Replace the LED time-multiplexing circuit of Listing 4.19 with the new design and
use the lower 4 bits of the 8-bit switch to control the duty cycle. Verify operation of
the circuit. It may be necessary to go to a dark area to see the effect of dimming.

4.7.3 Rotating square circuit

In a seven-segment LED display, a square pattern can be created by enabling the a, b, f,
and g segments or the c, d, e, and g segments. We want to design a circuit that circulates
the square patterns in the four-digit seven-segment LED display. The clockwise circulating
pattern is shown in Figure 4.12. The circuit should have an input, en, which enables or
pauses the circulation, and an input, cw, which specifies the direction (i.e., clockwise or
counterclockwise) of the circulation.

Design the circuit and verify its operation on the prototyping board. Make sure that the
circulation rate is slow enough for visual inspection.

106 REGULAR SEQUENTIAL CIRCUIT

Figure 4.13 Pattern for Experiment 4.7.4.

4.7.4 Heartbeat circuit

We want to create a “heartbeat” for the prototyping board. It repeats the simple pattern in
the four-digit seven-segment display, as shown in Figure 4.13, at a rate of 72 Hz. Design
the circuit and verify its operation on the prototyping board.

4.7.5 Rotating LED banner circuit

The prototyping board has a four-digit seven-segment LED display, and thus only four
symbols can be displayed at a time. We can show more information if the data is ro-
tated and moved continuously. For example, assume that the message is 10 digits (i.e.,
“0123456789”). The display can show the message as “0123”, “1234”, “2345”, . . ., “6789”,
“7890”, . . ., “0123”. The circuit should have an input, en, which enables or pauses the
rotation, and an input, d i r , which specifies the direction (i.e., rotate left or right).

Design the circuit and verify its operation on the prototyping board. Make sure that the
rotation rate is slow enough for visual inspection.

4.7.6 Enhanced stopwatch

Modify the stopwatch with the following extensions:

0 Add an additional signal, up, to control the direction of counting. The stopwatch
counts up when the up signal is asserted and counts down otherwise.

0 Add a minute digit to the display. The LED display format should be like M . SS . D,
where D represents 0.1 second and its range is between 0 and 9, SS represents seconds
and its range is between 00 and 59, and M represents minutes and its range is between 0
and 9.

Design the new stopwatch and verify its operation with a testing circuit.

4.7.7 Stack

A stack is a last-in-first-out buffer in which the last stored data is retrieved first. Storing a
data word to a stack is known as a push operation, and retrieving a data word from a stack
is known as apop operation. The I/O signals of a stack are similar to those of a FIFO buffer
except that we generally use the push and pop signals in place of the w r and rd signals.
Design a stack using a register file and verify its operation with a testing circuit similar to
the one in Listing 4.21.

