
CHAPTER 4 

REGULAR SEQUENTIAL CIRCUIT 

4.1 INTRODUCTION 

A sequential circuit is a circuit with memory, which forms the internal state of the circuit. 
Unlike a combinational circuit, in which the output is a function of input only, the output 
of a sequential circuit is a function of the input and the internal state. The synchronous 
design methodology is the most commonly used practice in designing a sequential circuit. In 
this methodology, all storage elements are controlled (i.e., synchronized) by a global clock 
signal and the data is sampled and stored at the rising or falling edge of the clock signal. It 
allows designers to separate the storage components from the circuit and greatly simplifies 
the development process. This methodology is the most important principle in developing 
a large, complex digital system and is the foundation of most synthesis, verification, and 
testing algorithms. All of the designs in the book follow this methodology. 

4.1.1 D FF and register 

The most basic storage component in a sequential circuit is a D-type flip-flop (D FF). The 
symbol and function table of a positive edge-triggered D FF are shown in Figure 4.l(a). 
The value of the d signal is sampled at the rising edge of the clk signal and stored to FF. 
A D FF may contain an asynchronous reset signal to clear the FF to ' 0 ' .  Its symbol and 
function table are shown in Figure 4.l(b). Note that the reset operation is independent of 
the clock signal. 

FPGA Protowping by VHDL Examples. By Pong P. Chu 
Copyright @ 2008 John Wiley & Sons, Inc. 

71 



72 REGULAR SEQUENTIAL CIRCUIT 

output 
logic 

~ 

d - next-state 
* external 

input 

cI k 

- logic 

clk q* 

4 

4 

f d  

state-next > 

(a) D FF 

reset clk q* 

- 0  
~~ 

(b) D FF with asynchronous reset 

reset clk en q* 

1 0 

4 

0 1  4 
reset o f 0  4 

(c) D FF with synchronous enable 

Figure 4.1 Block diagram and functional table of a D FF. 

n 
OUtDUt 

Figure 4.2 Block diagram of a synchronous system. 

The three main timing parameters of a D FF are Tcq (clock-to-q delay), Tsetup (setup 
time), and Thold (hold time). Tcq is the time required to propagate the value of d to q at 
the rising edge of the clock signal. The d signal must be stable around the sampling edge 
to prevent the FF from entering the metastable state. Tsetup and Thold specify the time 
intervals before or after the sampling edge. 

A D FF provides 1-bit storage. A collection of D FFs can be grouped together to store 
multiple bits and is known as a register. 

4.1.2 Synchronous system 

Block diagram 
consists of the following parts: 

The block diagram of a synchronous system is shown in Figure 4.2. It 

0 State register: a collection of D FFs controlled by the same clock signal 
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Next-state logic: combinational logic that uses the external input and internal state 
(i.e., the output of register) to determine the new value of the register 
Output logic: combinational logic that generates the output signal 

Max..nal operating frequency One of the most difficult design aspects of a sequential 
circuit is to ensure that the system timing does not violate the setup and hold time constraints. 
In a synchronous system, the storage components are grouped together and treated as a single 
register, as shown in Figure 4.2. We need to perfom timing analysis on only one memory 
component. 

The timing of a sequential circuit is characterized by f m a z ,  the maximal clock frequency, 
which specifies how fast the circuit can operate. The reciprocal of f m a z  specifies T c l o c k ,  

the minimal clock period, which can be interpreted as the interval between two sampling 
edges of the clock. To ensure correct operation, the next value must be generated and 
stabilized within this interval. Assume that the maximal propagation delay of next-state 
logic is Tcomb.  The minimal clock period can be obtained by adding the propagation delays 
and setup time constraint of the closed loop in Figure 4.2: 

Tclock = Tcq + T c o m b  + T s e t u p  

and the maximal clock rate is the reciprocal: 

1 
- 1 

-- f m a x  = 
Tclock  Tcq  + T c o m b  + Tsetup 

Timing constraint in Xilinx lSEXilinX wecif ic During synthesis, Xilinx software 
will analyze the synthesized circuit and show f m a z  in a report. We can also specify the 
desired operating frequency as a synthesis constraint, and the synthesis software will try to 
obtain a circuit to satisfy this requirement (i.e., a circuit whose f m a x  is equal to or greater 
than the desired operating frequency). For example, if we use the 50-MHz (i.e., 20-ns 
period) oscillator on the prototyping board as the clock source, f m a z  of a sequential circuit 
must exceed this frequency (i.e., the period must be smaller than 20 ns). The following 
lines can be added to the constraint file: 

NET "clk" TNM-NET = "clk"; 
TIMESPEC "TS-clk" = PERIOD "clk" 20 ns HIGH 50 % ;  

This indicates that the clk signal has a maximal period of 20 ns (i.e., 50 MHz) and a duty 
cycle of 50%. 

After synthesis, we can check the relevant timing information by invoking the View 
Design Summary  process from the ISE's Processes window. The Timing Constraints sec- 
tion shows whether the imposed constraints are met, and the Static Timing Report section 
provides more detailed timing information. 

4.1.3 Code development 

Our code development follows the basic block diagram in Figure 4.2. The key is to separate 
the memory component (i.e., the register) from the system. Once the register is isolated, 
the remaining portion is a pure combinational circuit, and the coding and analysis schemes 
discussed in previous chapters can be applied accordingly. While this approach may make 
the code a little bit more cumbersome at times, it helps us to better visualize the circuit 
architecture and avoid unintended memory and subtle mistakes. 
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Based on the characteristics of the next-state logic, we divide sequential circuits into 

0 Regular sequential circuit. The state transitions in the circuit exhibit a “regular” 
pattern, as in a counter or shift register. The next-state logic is constructed primarily 
by a predesigned, “regular” component, such as an incrementor or shifter. 

0 FSM. The state transitions in the circuit do not exhibit a simple, repetitive pattern. 
The next-state logic is constructed by “random logic” and synthesized from scratch. 
It should be called a random sequential circuit, but is commonly known as an FSM 
(finite state machine). 

0 FSMD. The circuit consists of a regular sequential circuit and an FSM. The two parts 
are known as a data path and a control path, and the complete circuit is known as an 
FSMD (FSM with data path). This type of circuit is used to implement an algorithm 
represented by register-transfer (RT) methodology, which describes system operation 
by a sequence of data transfers and manipulations among registers. 

three categories: 

The three types of circuits are discussed in this and two subsequent chapters. 

4.2 HDL CODE OF THE FF AND REGISTER 

Describing storage components in HDL is a subtle procedure, and there are many ways to 
do it. In fact, one common problem encountered by a new HDL user is the inference of 
unintended latches and buffers. Instead of covering all possible forms of syntactic descrip- 
tions, we introduce the code segments for several commonly used memory components. 
Since our development process separates the register and the combinational circuit, these 
components are sufficient for all designs in this book. The components are: 

0 D F F  
0 Register 
0 Register file 

4.2.1 D FF 

We consider three types of D FFs: 
0 D FF without asynchronous reset 
0 D FF with asynchronous reset 
0 D FF with synchronous enable 

The first two are the most basic memory components and can be found in the library of 
any device technology. The third can be constructed from a simple D FF. We include the 
code since it is a frequently used memory component and can be mapped to the FF of the 
Spartan-3 device’s logic cell. 

D FF without asynchronous reset The function table of a D FF is shown in Fig- 
ure 4.l(a) and the code is shown in Listing 4.1. 

Listing 4.1 D FF without asynchronous reset 

l i b r a r y  i e e e ;  
use i e e e .  std-logic-1164. a l l  ; 
e n t i t y  d - f f  i s  

p o r t  ( 
clk: in std-logic; 
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d :  i n  std-logic; 
q :  out  std-logic 

1 ;  
end d-ff ; 

a r c h i t e c t u r e  arch of  d-ff i s  
b e g i n  

10 

p r o c e s s  (clk) 
b e g i n  

15 i f  (clk’event and clk=’l’) then 
q <= d ;  

end i f  ; 
end p r o c e s s ;  

end arch; 

The rising edge is checked by the clk event and elk=' 1 expression, which represents 
that there is a change in the clk signal (i.e., an “event”) and the new value is ’1’. If this 
condition is t rue ,  the value of d is stored to q, and if this condition is false,  q keeps its 
previous value (i.e.. memorizes the value sampled earlier). Note that only the clk signal is 
included in the sensitive list. This is consistent with the fact that the d signal is sampled only 
at the rising edge of the c l k  signal, and change in its value does not trigger any immediate 
response. 

D FF with asynchronous reset A D FF may contain an asynchronous reset signal, as 
shown in the function table of Figure 4.l(b). The signal clears the D FF to ’0’ any time and is 
not controlled by the clock signal. It actually has a higher priority than the regularly sampled 
input. Using an asynchronous reset signal violates the synchronous design methodology 
and thus should be avoided in normal operation. Its major application is to perform system 
initialization. For example, we can generate a short reset pulse to force a system to an initial 
state after turning on the power. The code for a D FF with asynchronous reset is shown in 
Listing 4.2. 

Listing 4.2 D FF with asvnchronous reset 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
e n t i t y  d-ff-reset i s  

p o r t  ( 
5 clk, reset: i n  std-logic; 

d :  i n  std-logic; 
q :  o u t  std-logic 

1 ;  
end d-f f -reset ; 

a r c h i t e c t u r e  arch o f  d-ff-reset i s  
b e g i n  

10 

p r o c e s s  (clk, reset 1 
b e g i n  

I 5  i f  ( r e s e t = ’ l ’ )  then 
q < = ’ O ’ ;  

e l s i f  (clk’event and c l k = ’ l ’ )  then 

end i f  ; 
q <= d ;  
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XI end p r o c e s s ;  
end arch; 

Note that the reset signal is included in the sensitivity list, and its condition is checked 
before the rising-edge condition. 

D FF with synchronous enable A D FF may include an additional control signal, 
en, to enable the FF to sample the input value. Its symbol and functional table are shown 
in Figure 4.l(c). Note that the en signal is examined only at the rising edge of the clock 
and thus is synchronous. If it is not asserted, the FF keeps its previous value. The code is 
shown in Listing 4.3. 

Listing 4.3 One-process coding style for a D FF with synchronous enable 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
e n t i t y  d-ff-en i s  

p o r t  ( 
3 c l k, reset: i n  std-logic; 

e n :  i n  std-logic; 
d :  i n  std-logic; 
q :  o u t  std-logic 

) ;  
10 end d-f f -en ; 

a r c h i t e c t u r e  arch of  d-ff-en i s  
b e g i n  

p r o c e s s  (clk, reset) 
15 b e g i n  

i f  (reset=’l’) then 

e l s i f  (clk’event and clk=’l’) then 
q < = ’ O ’ ;  

i f  (en=’l’) then 

end i f  ; 
20 q <= d ;  

end i f  ; 
end p r o c e s s ;  

end arch; 

The enabling feature of this D FF is useful in maintaining synchronism between a fast 
subsystem and a slow subsystem. For example, assume that the operation rates of a fast and 
a slow subsystem are 50 MHz and 1 MHz. Instead of using a derived 1-MHz clock to drive 
the slow subsystem, we can generate a periodic enable tick that is asserted one clock cycle 
every 50 clock cycles. The slow subsystem is disabled (i.e., keep the previous state) for the 
remaining 49 clock cycles. The same scheme can also be applied to eliminate a gated clock 
signal. 

Since the enable signal is synchronous, this circuit can be constructed by a regular D FF 
and simple next-state logic. The code is shown in Listing 4.4, and its block diagram is 
shown in Figure 4.3. 

Listing 4.4 Two-segment coding style for a D FF with synchronous enable 

a r c h i t e c t u r e  two-seg-arch of  d-ff-en i s  
s i g n a l  r-reg , r-next : std-logic; 
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Figure 4.3 D FF with synchronous enable. 

beg in  
-- D FF 

5 p r o c e s s  (clk, reset) 
beg in  

i f  (reset=’l’) then 

e l s i f  (clk’event and clk=’l’) then 

end i f  ; 
end p r o c e s s ;  
__ n e x t - s t a t e  l o g i c  
r-next <= d when en = ’ l ’  e l s e  

I <  r-reg ; 
__ o u t p u t  l o g i c  
q <= r-reg; 

end two-seg-arch ; 

r-reg < = ’ O ’ ;  

10 r-reg <= r-next; 

For clarity, we use suffixes n e x t  and -reg to emphasize the next input value and the 
registered output of an FF. They are connected to the d and q signals of a D FF. The earlier 
one-process code can be considered as shorthand for this more explicit description. 

4.2.2 Register 

A register is a collection of D FFs that are controlled by the same clock and reset signals. 
Like a D FF, a register can have an optional asynchronous reset signal and a synchronous 
enable signal. The code is identical to that of a D FF except that the array data type, 
s t d - l o g i c v e c t o r ,  is needed for the relevant input and output signals. For example, an 
8-bit register with asynchronous reset is shown in Listing 4.5. 

Listing 4.5 Register 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
e n t i t y  reg-reset i s  

por t  ( 
clk, reset: i n  std-logic; 
d: in  std-logic-vector (7 downto 0 ) ;  
q :  out  std-logic-vector ( 7  downto 0) 

) ;  
end reg-reset ; 

10 



78 REGULAR SEQUENTIAL CIRCUIT 

a r c h i t e c t u r e  arch of reg-reset i s  
b e g i n  

Ii 

p r o c e s s  (clk , reset) 
b e g i n  

i f  (reset=’l’) then 

e l s i f  (clk’event and clk=’l’) then 

end i f  ; 

q < = ( o t h e r s = > ’ O ’ ) ;  

q <= d ;  

?O end p r o c e s s ;  
end arch; 

Note that the expression (others=>’O’) means that all elements are assigned to ’0’ and is 
equivalent to t tOOOOOOOOrt in this case. 

4.2.3 Register file 

A register file is a collection of registers with one input port and one or more output ports. 
The write address signal, w-addr, specifies where to store data, and the read address signal, 
r-addr, specifies where to retrieve data. The register file is generally used as fast, temporary 
storage. The code for a parameterized 2W-by-B register file is shown in Listing 4.6. Two 
generics are defined in this design. The W generic specifies the number of address bits, 
which implies that there are 2W words in the file, and the B generic specifies the number of 
bits in a word. 

Listing 4.6 Parameterized register file 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use  ieee. numeric-std. a l l  ; 
e n t i t y  reg-file i s  

5 g e n e r i c (  
B :  integer:=8; -- number o f  b i t s  
W :  integer:=2 -- number o f  a d d r e s s  b i t s  

) ;  
p o r t  ( 

10 c lk, reset: i n  std-logic; 
wr-en: i n  std-logic; 
w-addr , r-addr : in std-logic-vector (W-1 downto 0)  ; 
w-data: i n  std-logic-vector ( B - 1  downto 0)  ; 
r-data: o u t  std-logic-vector ( B - 1  downto 0)  

1’ ) ; 
end reg-f ile; 

a r c h i t e c t u r e  arch of reg-file i s  
t y p e  reg-file-type i s  a r r a y  (2**W-1 downto 0) of 

10 std-logic-vector ( B - 1  downto 0)  ; 
s i g n a l  array-reg : reg-f ile-type; 

p r o c e s s  (clk , reset) 
b e g i n  

25 i f  (reset=’l’) t h e n  

b e g i n  

array-reg <= ( o t h e r s = > ( o t h e r s = > ’ O ’ ) )  ; 
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e l s i f  (clk’event and clk=’l’) then 
i f  wr-en=’l’ then 

array-reg(to-integer(unsigned(w-addr))) <= w-data; 
?O end i f  ; 

end i f  ; 
end p r o c e s s ;  
__ r e a d  p o r t  
r-data <= array-reg(to-integer(unsigned(r-addr))); 

2 5  end a r c h ;  

The code includes several new features. First, since no built-in two-dimensional ar- 
ray is defined in the s td - log ic - I164  package a user-defined array-of-array data type, 
reg-f i l e - t y p e ,  is introduced. It is first defined by a type statement and is then used by the 
a r r ay - reg  signal. Second, a signal is used as an index to access an element in the array, as 
in a r r a y - r e g (  . . w-addr . . 1. Although the description is very abstract, Xilinx software 
recognizes this language construct and can derive the correct implementation accordingly. 
The array-reg(. . .)  <= . . . and . . . <= array-reg(. . . )  statements infer decoding and 
multiplexing logic, respectively. 

Some applications may need to retrieve multiple data words at the same time. This can 
be done by adding an additional read port: 

r-data2 <= array-reg(to-integer(unsigned(r-addr-2))); 

4.2.4 Storage components in a Spartan-3 devicexiiinx specific 

In a Spartan-3 device, each logic cell contains a D FF with asynchronous reset and syn- 
chronous enable. These D FFs basically constitute the register of Figure 4.2. Since a logic 
cell also contains a four-input LUT, it will be wasteful if the cell is just used simply as 
1 bit of a massive storage. The Spartan-3 device also has distributed RAM (random access 
memory) and block RAM modules, and they can be used for larger storage requirements. 
These modules can be configured for synchronous operation, and their characteristics are 
somewhat like a restricted version of the register file. The configuration and inference of 
these modules are discussed in Chapter 11. 

4.3 SIMPLE DESIGN EXAMPLES 

We illustrate the construction of several simple, representative sequential circuits in this 
section. 

4.3.1 Shift register 

Free-running shift register A free-running shift register shifts its content to the left 
or right by one position in each clock cycle. There is no other control signal. The code for 
an N-bit free-running shift-right register is shown in Listing 4.7. 

Listing 4.7 Free-running shift register 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  free-run-shift-reg i s  
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g e n e r i c  (N: integer : =  8) ; 
5 p o r t (  

clk, reset: i n  std-logic; 
s-in: i n  std-logic; 
s-out : out std-logic 

) ;  
to end f ree-run-shif t-reg ; 

a r c h i t e c t u r e  arch of  free-run-shift-reg i s  
s i g n a l  r-reg : std-logic-vector (N-1 downto 0 )  ; 
s i g n a l  r-next : std-logic-vector (N-1 downto 0)  ; 

__ r e g i s t e r  
p r o c e s s  (clk , reset 
beg in  

15 beg in  

i f  (reset=’l’) then 
20 r-reg <= ( o t h e r s = > ’ O ’ ) ;  

e l s i f  (clk’event and clk=’l’) then 

end i f ;  
end p r o c e s s ;  

r-next <= s-in & r-reg(N-1 downto 1); 
__ o u t p u t  
s-out <= r-reg(0); 

r-reg <= r-next; 

25 -- n e x t - s t a t e  l o g i c  ( s h i f t  r i g h t  I b i t )  

end arch; 

The next-state logic is a 1-bit shifter, which shifts r-reg right one position and inserts 
the serial input, s-in, to the MSB. Since the 1-bit shifter involves only reconnection of 
the input and output signals, no real logic is needed. Its propagation delay represents the 
smallest possible Tcomb,  and the corresponding f m a z  represents the highest clock rate that 
can be achieved for a given device technology. 

Universal shift register A universal shift register can load parallel data, shift its content 
left or right, or remain in the same state. It can perform parallel-to-serial operation (first 
loading parallel input and then shifting) or serial-to-parallel operation (first shifting and 
then retrieving parallel output). The desired operation is specified by a 2-bit control signal, 
ctrl. The code is shown in Listing 4.8. 

Listing 4.8 Universal shift register 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
e n t i t y  univ-shift-reg i s  

g e n e r i c  ( N :  integer : =  8) ; 
s p o r t (  

clk, reset: in  std-logic; 
ctrl: i n  std-logic-vector (1 downto 0 )  ; 
d :  i n  std-logic-vector ( N - 1  downto 0 )  ; 
q :  out  std-logic-vector ( N - 1  downto 0)  

in ) ; 
end univ-shift-reg; 

a r c h i t e c t u r e  arch of  univ-shift-reg i s  
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s i g n a l  r-reg : std-logic-vector (N-1 downto 0)  ; 
1 5  s i g n a l  r-next : std-logic-vector ( N - 1  downto 0 )  ; 

b e g i n  
__ r e g i s t e r  
p r o c e s s  (clk, reset) 
b e g i n  

20 i f  (reset='l') then 
r-reg <= ( o t h e r s = > ' O ' ) ;  

r-reg <= r-next; 
e I s i f  (clk ' event and clk= ' 1 ' ) then 

end i f  ; 
:C end p r o c e s s ;  

_- n e x t - s t a t e  l o g i c  
with ctrl s e l e c t  
r-next <= 

when " 0 0 "  -- r-reg , no OP 

30 r-reg"-2 downto 0 )  & d(0) when " 0 1 "  , - - s h i f t  l e f t :  
d(N-1) & r-reg(N-1 downto 1) when "lo", - - s h i f t  r i g h t ;  
d when o t h e r s ;  -- l o a d  

__ o u t p u t  
q <= r-reg; 

35 end arch; 

The next-state logic uses a 4-to-1 multiplexer to select the desired next value of the 
register. Note that the LSB and MSB of d (i.e., d(0)  and d(N-I)) are used as serial input 
for the shift-left and shift-right operations. 

In a Xilinx Spartan-3 device, a logic cell's 4-input LUT is implemented by a 16-by-1 
SRAM. The same SRAM can also be configured as a cascading chain of sixteen 1-bit SRAM Xilinx 
cells, which resembles a 16-bit shift register. This can be used to construct certain forms specific 
of shift register and leads to very efficient implementation. 

4.3.2 Binary counter and variant 

Free-running binary counter A free-running binary counter circulates through a bi- 
nary sequence repeatedly. For example, a 4-bit binary counter counts from "OOOO", "0001 'I, 
. . , , to 'I 1 1 1 1 'I and wraps around. The code for a parameterized N-bit free-running binary 
counter is shown in Listing 4.9. 

Listing 4.9 Free-running binary counter 

l i b r a r y  ieee; 
use  ieee.std-logic-ll64.all; 
use  ieee. numeric-std. a l l  ; 
e n t i t y  free-run-bin-counter i s  

j g e n e r i c ( N :  integer : =  8); 
p o r t  ( 

clk, reset: i n  std-logic; 
max-tick: o u t  std-logic; 
q: o u t  std-logic-vector (N-1 downto 0)  

i n  ) ; 
end free-run-bin-counter ; 

a r c h i t e c t u r e  arch of  free-run-bin-counter i s  
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Table 4.1 Function table of a universal binary counter 

syn-clr  load en up q* Operation 

1 - - - 00 ‘ . .OO synchronous clear 
0 1 - -  d parallel load 
0 0 1 1 q+1 count up 
0 0 1 0 q-I count down 
0 0 0 -  9 pause 

s i g n a l  r-reg: unsigned(N-1 downto 0 )  ; 
is s i g n a l  r-next : unsigned ( N - 1  downto 0)  ; 

b e g i n  
__ r e g i s t e r  
p r o c e s s  (clk, reset) 
b e g i n  

20 i f  (reset=’l’) t h e n  
r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= r-next; 
e l s i f  (clk’event and clk=’l’) t h e n  

end i f ;  
2s end p r o c e s s ;  

_- n e x t - s t a t e  l o g i c  
r-next <= r-reg + 1; 
_- o u t p u t  l o g i c  
q <= std-logic-vector(r-reg); 

30 max-tick <= ’ 1 ’  when r-reg=(2**N-l) e l s e  J O J ;  
end arch; 

~ ~~~ 

The next-state logic is an incrementor, which adds 1 to the register’s current value. By 
definition of the + operator in the IEEE numeric-std package, the operation implicitly 
wraps around after the r - reg reaches ’’ 1. . .1”. The circuit also consists of an output status 
signal, max-t ick,  which is asserted when the counter reaches the maximal value, ” 1. . . 1 
(which is equal to 2N - 1). 

The max-t i ck  signal represents a special type of signal that is asserted for a single clock 
cycle. In this book, we call this type of signal a tick and use the suffix - t i ck  to indicate a 
signal with this property. It is commonly used to interface with the enable signal of other 
sequential circuits. 

Universal binary counter A universal binary counter is more versatile. It can count up 
or down, pause, be loaded with a specific value, or be synchronously cleared. Its functions 
are summarized in Table 4.1. Note the difference between the r e s e t  and syn-clr  signals. 
The former is asynchronous and should only be used for system initialization. The latter is 
sampled at the rising edge of the clock and can be used in normal synchronous design. The 
code for this counter is shown in Listing 4.10. 

Listing 4.10 Universal binary counter 

l i b r a r y  ieee; 
use  ieee.std-logic-ll64.all; 
use  ieee . numeric-std. a l l  ; 
e n t i t y  univ-bin-counter i s  
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i g e n e r i c ( N :  integer : =  8 ) ;  

p o r t  ( 
clk, reset: i n  std-logic; 
syn-clr , load, en, up: i n  std-logic; 
d :  i n  std-logic-vector ( N - 1  downto  0)  ; 

q :  o u t  std-logic-vector ( N - 1  d o w n t o  0 )  
I (1 max-tick, min-tick: o u t  std-logic; 

) ;  
e n d  univ-bin-counter; 

15 a r c h i t e c t u r e  arch of univ-bin-counter i s  
s i g n a l  r-reg : unsigned ( N - 1  downto  0)  ; 
s i g n a l  r-next : unsigned ( N - 1  downto  0)  ; 

__ r e g i s t e r  

b e g i n  

b e g i n  

20 p r o c e s s  (clk, reset) 

i f  (reset=’l’) t h e n  

e l s i f  (clk’event a n d  clk=’l’) t h e n  

e n d  i f  ; 
e n d  p r o c e s s ;  
__ n e x t - s t a t e  l o g i c  
r-next <= ( o t h e r s = > ’ O ’ )  when syn-clr=’l’ e l s e  

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

15 r-reg <= r-next; 

30 unsigned (d) when load= 1 ’ e l s e  
r-reg f 1 when en = J l ’  a n d  up=’l’ e l s e  
r-reg - 1 when en = ’ i ’  a n d  up=’O’ e l s e  
r-reg ; 

__ o u t p u t  l o g i c  

max-tick <= ’ 1 ’  when r-reg=(2**N-l) e l s e  ’ O J ;  
min-tick <= ’ 1 ’  when r-reg=O e l s e  ’ 0 ’ ;  

35 q <= std-logic-vector (r-reg) ; 

e n d  arch; 

The next-state logic follows the function table and uses a conditional signal assignment to 
prioritize the desired operations. 

Mod- counter A mod-m counter counts from 0 to m - 1 and wraps around. A 
parameterized mod-m counter is shown in Listing 4.11. It has two generics. One is M, 
which specifies the limit, m ,  and the other is N, which specifies the number of bits needed 
and should be equal to /log, M I .  The code is shown in Listing 4.11, and the default value 
is for a mod- 10 counter. 

Listing 4.11 Mod-m counter 

l i b r a r y  ieee; 
u s e  ieee.std-logic-ll64,all; 
u s e  ieee . numeric-std. a l l  ; 
e n t i t y  mod-m-counter i s  

5 g e n e r i c (  
N: integer : =  4; -- n u m b e r  o f  b i t s  
M :  integer : =  10 -- m o d 4  

) ;  
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p o r t  ( 
10 clk, reset: i n  std-logic; 

max-tick: ou t  std-logic; 
q :  o u t  std-logic-vector ( N - 1  downto 0)  

) ;  
end mod-m-counter ; 

a r c h i t e c t u r e  arch of mod-m-counter i s  
15 

s i g n a l  r-reg : unsigned ( N - 1  downto 0 )  ; 
s i g n a l  r-next : unsigned ( N - 1  downto 0 )  ; 

begin  
20 -- r e g i s t e r  

25 

p r o c e s s  (clk, reset) 
begin  

if  (reset=’l’) t h e n  

e l s i f  (clk’event and clk=’l’) t hen  

end i f  ; 

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= r-next; 

end p r o c e s s ;  
__ n e x t - s t a t e  l o g i c  

30 r-next <= ( o t h e r s = > ’ O ’ )  when r-reg=(M-l) e l s e  
r-reg + 1 ;  

__ o u t p u t  l o g i c  
q <= std-logic-vector(r-reg); 
max-tick <= ’ 1 ’  when r-reg=(M-l) e l s e  ’ 0 ’ ;  

is end arch; 

The next-state logic is constructed by a conditional signal assignment statement. If the 
counter reaches M-1, the new value is cleared to 0. Otherwise, it is incremented by 1. 

Inclusion of the N parameter in the code is somewhat redundant since its value depends 
on M. A more elegant way is to define a function that calculates N from M automatically. In 
VHDL, this can be done by creating a user-definedfuncrion in a package and invoking the 
package before the entity declaration. This is beyond the scope of this book and the details 
may be found in the references cited in the Bibliographic section. 

4.4 TESTBENCH FOR SEQUENTIAL CIRCUITS 

A testbench is a program that mimics a physical lab bench, as discussed in Section 1.4. 
Developing a comprehensive testbench is beyond the scope of this book. We discuss a 
simple testbench for the previous universal binary counter in this section. It can serve as a 
template for other sequential circuits. The code for the testbench is shown in Listing 4.12. 

Listing 4.12 Testbench for a universal binarv counter 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 

e n t i t y  bin-counter-tb i s  
5 end bin-counter-tb; 

a r c h i t e c t u r e  arch of bin-counter-tb i s  
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c o n s t a n t  THREE:  integer : =  3 ;  
c o n s t a n t  T :  time : =  2 0  n s ;  -- c l k  p e r i o d  

1 0  s i g n a l  clk, reset: std-logic; 
s i g n a l  syn-clr , load, en, u p :  std-logic; 
s i g n a l  d :  std-logic-vector ( T H R E E - 1  downto 0 )  ; 
s i g n a l  max-tick , min-tick: std-logic ; 
s i g n a l  q :  std-logic-vector ( T H R E E - 1  downto 0)  ; 

I S  begin  

50 

S 5  

60 

__ . . . . . . . . . . . . . . . . . . . . . . . . . .  
__ i n s t a n t i a t i o n  

counter-unit : e n t i t y  work. univ-bin-counter (arch) 
__ . . . . . . . . . . . . . . . . . . . . . . . . . .  

g e n e r i c  map ( N =  > THREE ) 
port  map(clk=>clk, reset=>reset , syn-clr=>syn-clr , 

load=>load, en=>en, u p = > u p ,  d=>d, 
max-tick=>max-tick, min-tick=>min-tick, q = > q ) ;  

__ . . . . . . . . . . . . . . . . . . . . . . . . . .  
__ c l o c k  

-- 2 0  n s  c l o c k  r u n n i n g  f o r e v e r  
p r o c e s s  
begin  

_- . . . . . . . . . . . . . . . . . . . . . . . . . .  

clk <= ’ 0 ’ ;  
wai t  f o r  T / 2 ;  
clk <= ’ 1 ’ ;  
wait  f o r  T / 2 ;  

end p r o c e s s ;  

r e s e t  
__ . . . . . . . . . . . . . . . . . . . . . . . . . .  
__ 

__ . . . . . . . . . . . . . . . . . . . . . . . . . .  
__ r e s e t  a s s e r t e d  f o r  T / 2  
reset <= ’ l ’ ,  ’ 0 ’  a f t e r  T / 2 ;  

__ . . . . . . . . . . . . . . . . . . . . . . . . . .  
__ o t h e r  s t i m u l u s  

p r o c e s s 
begin  

__ . . . . . . . . . . . . . . . . . . . . . . . . . .  

-_ . . . . . . . . . . . . . . . . . . . . . . . . . .  
__ i n  i t i a  1 i n p u t  

syn-clr <= ’ 0 ’ ;  
load <= ’ 0 ’ ;  

up <= > I > ;  -- c o u n t  up  
d <= ( o t h e r s = > ’ O ’ ) ;  
wa i t  u n t i l  falling-edge (clk) ; 
wait  u n t i l  falling-edge (clk) ; 

__ t e s t  l o a d  

load <= ’1’: 

__ . . . . . . . . . . . . . . . . . . . . . . . . . .  

en <= ’ 0 ’ ;  

__ . . . . . . . . . . . . . . . . . . . . . . . . . .  

__ . . . . . . . . . . . . . . . . . . . . . . . . . .  
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d <= "011"; 
w a i t  u n t i l  falling-edge (clk) ; 
load <= '0'; 
-- p a u s e  2 c l o c k s  
w a i t  u n t i l  falling-edge(clk); 
w a i t  u n t i l  falling-edgecclk) ; 

_- t e s t  s y n - c l e a r  

syn-clr <= '1'; -- c l e a r  
w a i t  u n t i l  falling-edge (clk); 
syn-clr <= '0'; 

_- t e s t  up c o u n t e r  and  p a u s e  

en <= '1'; -- c o u n t  
up <= '1'; 
f o r  i i n  1 t o  1 0  l o o p  -- c o u n t  1 0  c l o c k s  

end l o o p ;  
en < = ' O ' ;  
w a i t  u n t i l  f alling-edge (clk) ; 
w a i t  u n t i l  f alling-edge (clk) ; 
en <='I>; 
w a i t  u n t i l  falling-edge(clk); 
w a i t  u n t i l  falling-edge (clk); 

__ . . . . . . . . . . . . . . . . . . . . . . . . . .  

_- . . . . . . . . . . . . . . . . . . . . . . . . . .  

__ . . . . . . . . . . . . . . . . . . . . . . . . . .  

__ . . . . . . . . . . . . . . . . . . . . . . . . . .  

w a i t  u n t i l  falling-edge (clk) ; 

__ . . . . . . . . . . . . . . . . . . . . . . . . . .  
t e s t  down c o u n t e r  __ 

__ . . . . . . . . . . . . . . . . . . . . . . . . . .  
up <= '0'; 
f o r  i i n  1 t o  10 l o o p  -- r u n  1 0  c l o c k s  

end l o o p ;  

__ o t h e r  w a i t  c o n d i t i o n s  

__ c o n t i n u e  until q=2 
w a i t  u n t i l  q="010"; 
w a i t  u n t i l  falling-edge (clk); 
up <= '1'; 

__ c o n t i n u e  u n t i l  m i n - t i c k  c h a n g e s  v a l u e  
w a i t  on min-tick; 
w a i t  u n t i l  falling-edge (clk) ; 
up <= '0'; 
w a i t  f o r  4*T; -- w a i t  f o r  8 0  12s 
en <= ' 0 ' ;  
w a i t  f o r  4*T; 

__ t e r m i n a t e  s i m u l a t i o n  

a s s e r t  false 
r e p  o r t 'I S i mu 1 at i on C o mp 1 e t e d " 

w a i t  u n t i l  falling-edge (clk) ; 

__ . . . . . . . . . . . . . . . . . . . . . . . . . .  

__ . . . . . . . . . . . . . . . . . . . . . . . . . .  

_- . . . . . . . . . . . . . . . . . . . . . . . . . .  

__ . . . . . . . . . . . . . . . . . . . . . . . . . .  

s e v e r i t y  failure; 
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end p r o c e s s  ; 
115 end arch; 

The code consists of a component instantiation statement, which creates an instance of 
a 3-bit counter, and three segments, which generate a stimulus for clock, reset, and regular 
inputs. Since operation of a synchronous system is synchronized by a clock signal, we 
define a constant with the built-in data type time for the clock period: 

c o n s t a n t  T :  time : =  2 0  ns;  -- c l k  p e r i o d  

The clock generation is specified by a process: 

p r o c e s s  
beg in  

clk <= ’ 0 ’ ;  
wai t  f o r  T / 2 ;  
clk <= ’1’; 
wai t  f o r  T / 2 ;  

end p r o c e s s ;  

The clk signal is assigned between ’0’ and ’ 1 ’ alternatively, and each value lasts for half a 
period. Note that the process has no sensitivity list and repeats itself forever. 

The reset stimulus involves one statement, 

reset <= ’ I > ,  ’ 0 ’  a f t e r  T / 2 ;  

It indicates that the r e s e t  signal is set to ’ 1’ initially and changed to ’0’ after half a period. 
The statement represents the “power-on” condition, in which the r e s e t  signal is asserted 
momentarily to clear the system to the initial state. Note that, by default, the ’U’ value (for 
uninitialized), not ’ 0 ’, is assigned to a signal with the s td- logic  type. Using a short reset 
pulse is a good mechanism to perform system initialization. 

The last process statement generates a stimulus for other input signals. We first test 
the load and clear operations and then exercise counting in both directions. The final 
assert false statement forces the simulator to terminate simulation, as discussed in Sec- 
tion 2.7. 

For a synchronous system with positive edge-triggered FFs, an input signal must be stable 
around the rising edge of the clock signal to satisfy the setup and hold time constraints. One 
easy way to achieve this is to change an input signal’s value during the ’1’-to-’0’ transition 
of the c l k  signal. The f al l ing-edge function of the std-logic-1164 package checks 
this condition, and we can use it in a wait statement: 

wai t  u n t i l  falling-edge (clk) ; 

Note that each statement represents a new falling edge, which corresponds to the advance- 
ment of one clock cycle. In our template, we generally use this statement to specify the 
progress of time. For multiple clock cycles, we can use a loop statement: 

f o r  i in 1 to  10 l oop  -- c o u n t  1 0  c l o c k s  

end l o o p ;  
wa i t  u n t i l  falling-edge (clk) ; 

There are other useful forms of wait statements, as shown at the end of the process. We 
can wait until a special condition, such as “when q is equal to 2”, 

wait  u n t i l  q = ” O l O ” ;  

or wait until a signal changes, such as 
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reset 
I t 

Figure 4.4 Testbench waveform. 

w a i t  on m i n - t i c k ;  

or wait for an absolute time, such as 

w a i t  for  4*T; -- w a i t  f o r  4 c l o c k  p e r i o d s  

If an input signal is modified after these statements, we need to make sure that the input 
change does not occur at the rising edge of the clock. An additional 

w a i t  u n t i l  falling-edge(clk); 

statement should be added when needed. 

shown in Figure 4.4. 
We can compile the code and perform simulation. Part of the simulated waveform is 

4.5 CASE STUDY 

After examining several simple circuits, we discuss the design of more sophisticated exam- 
ples in this section. 

4.5.1 LED time-multiplexing circuit 

The S3 board has four seven-segment LED displays, each containing seven bars and one 
small round dot. To reduce the use of FPGA's I/O pins, the S3 board uses a time-multiplexing 
sharing scheme. In this scheme, the four displays have their individual enable signals but 
share eight common signals to light the segments. All signals are active-low (i.e., enabled 
when a signal is '0 ') .  The schematic of displaying '3' on the rightmost LED is shown in 
Figure 4.5. Note that the enable signal (i.e., an) is "1 110". This configuration clearly can 
enable only one display at a time. We can time-multiplex the four LED patterns by enabling 
the four displays in turn, as shown in the simplified timing diagram in Figure 4.6. If the 
refreshing rate of the enable signal is fast enough, the human eye cannot distinguish the 
on and off intervals of the LEDs and perceives that all four displays are lit simultaneously. 
This scheme reduces the number of I/O pins from 32 to 12 (i.e., eight LED segments plus 
four enable signals) but requires a time-multiplexing circuit. Two variations of the circuit 
are discussed in the following subsections. 
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Figure 4.5 Time-multiplexed seven-segment LED display. 

Figure 4.6 Timing diagram of a time-multiplexed seven-segment LED display. 
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Figure 4.7 Symbol and block diagram of a time-multiplexing circuit. 

Time multiplexing with LED patterns The symbol and block diagram of the time- 
multiplexing circuit are shown in Figure 4.7. It takes four seven-segment LED patterns, 
in3, in2, ini, and inO, and passes them to the output, sseg, in accordance with the enable 
signal. 

The refresh rate of the enable signal has to be fast enough to fool our eyes but should 
be slow enough so that the LEDs can be turned on and off completely. The rate around the 
range 1000 Hz should work properly. In our design, we use an 18-bit binary counter for 
this purpose. The two MSBs are decoded to generate the enable signal and are used as the 
selection signal for multiplexing. The refreshing rate of an individual bit, such as an (0) , 
becomes W H z ,  which is about 800 Hz. The code is shown in Listing 4.13. 

Listing 4.13 LED time-multiplexing circuit with LED patterns 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
use  ieee . numeric-std. a l l  ; 
e n t i t y  disp-mux i s  

5 p o r t (  
clk, reset: i n  std-logic; 
in3, in2, inl, inO: i n  std-logic-vsctor(7 downto 0 ) ;  
an: out  std-logic-vector (3 downto 0 )  ; 
sseg : o u t  std-logic-vector ( 7  downto 0 )  

10 1 ; 
end disp-mux ; 
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a r c h i t e c t u r e  arch of  disp-mux i s  
_- r e f r e s h i n g  r a t e  a r o u n d  8 0 0  H z  ( 5 0 M H z / 2 ^ 1 6 )  

s i g n a l  q-reg , q-next : unsigned ( N - 1  downto 0)  ; 
s i g n a l  sel: std-logic-vector (1 downto 0 )  ; 

__ r e g i s t e r  

beg in  

1 5  c o n s t a n t  N :  integer :=18; 

beg in  

20 p r o c e s s  (clk, reset) 

i f  reset='l' then 

e l s i f  (clk'event and clk='l') then 

end i f  ; 
end p r o c e s s ;  

q-reg <= ( o t h e r s = > ' O ' ) ;  

q-reg <= q-next; 

-_ n e x t - s t a t e  l o g i c  f o r  t h e  c o u n t e r  
30 q-next <= q-reg + 1 ;  

-- 2 MSBs o f  c o u n t e r  t o  c o n t r o l  4 - t o - I  m u l t i p l e x i n g  
__ and  t o  g e n e r a t e  a c t i v e - l o w  e n a b l e  s i g n a l  
sel <= std-logic-vector(q-reg(N-1 downto N-2)) ; 
p r o c e s s  (sel , inO, in1 , in2, in3) 
beg in  

3~ 

case  sel i s  
when " 0 0 "  = >  

an <= "1110"; 
40 sseg <= inO; 

when " 0 1 "  = >  
an <= "1101"; 
sseg <= inl; 

when "10" = >  
44 an <= "1011"; 

sseg <= in2; 

an <= "0111"; 
sseg <= in3; 

when o t h e r s  = >  

5 0  end c a s e ;  
end p r o c e s s ;  

end arch; 

We use the testing circuit in Figure 4.8 to verify operation of the LED time-multiplexing 
circuit. It uses four 8-bit registers to store the LED patterns. The registers use the same 
8-bit switch as input but are controlled by individual enable signal. When we press a button, 
the corresponding register is enabled and the switch pattern is loaded to that register. The 
code is shown in Listing 4.14. 

Listing 4.14 Testing circuit for time multiplexing with LED patterns 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use  ieee. numeric-std. a l l  ; 
e n t i t y  disp-mux-test i s  

5 p o r t (  
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Figure 4.8 LED time-multiplexing testing circuit. 

clk: in  std-logic; 
btn: in  std-logic-vector (3 downto 0 )  ; 
sw: i n  std-logic-vector (7 downto 0)  ; 
an: out  std-logic-vector (3 downto 0)  ; 

10 sseg : out  std-logic-vector (7 downto 0 )  

1 ;  
end disp-mux-test ; 

a r c  h i  t e c  t u r e  arch 
1 5  s i g n a l  d3_reg, 

s i g n a l  dl-reg , 

disp-unit : e n t  
port  map( 

clk=>clk 

beg in  

20 

30 

of  disp-mux-test i s  
d2-reg: std-logic-vector (7 downto 0 )  ; 
do-reg : std-logic-vector (7 downto 0 )  ; 

t y  work. disp-mux 

reset => ’ 0  ’ , 
in3=>d3_reg, in2=>d2_reg, inl=>dl-reg, 
inO=>dO-reg, an=>an, sseg=>sseg) ; 

__ r e g i s t e r s  f o r  4 l e d  p a t t e r n s  
p r o c e s s  (clk) 

25 beg in  
i f  (clk’event and clk=’l’) then 

i f  (btn(3)=’1’) then 

end i f ;  
i f  (btn(2)=’l’) then 

end i f ;  
i f  (btn(l)=’l’) then 

d3-reg <= s w ;  

d2-reg <= sw; 

dl-reg <= s w ;  
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Figure 4.9 Block diagram of a hexadecimal time-multiplexing circuit. 

35 end i f  ; 
i f  (btn(O)=’l’) then 

end i f  ; 
do-reg <= s w ;  

end i f  ; 
40 end p r o c e s s ;  

end arch; 

an 

Time multiplexing with hexadecimal digits The most common application of a 
seven-segment LED is to display a hexadecimal digit. The decoding circuit is discussed 
in Section 3.7.1. To display four hexadecimal digits with the previous time-multiplexing 
circuit, four decoding circuits are needed. A better alternative is first to multiplex the 
hexadecimal digits and then decode the result, as shown in Figure 4.9. 

This scheme requires only one decoding circuit and reduces the width of the 4-to-1 
multiplexer from 8 bits to 5 bits (i.e., 4 bits for the hexadecimal digit and 1 bit for the 
decimal point). The code is shown in Listing 4.15. In addition to clock and reset, the input 
consists of four 4-bit hexadecimal digits, hex3, hex2, hexl, and hex0, and four decimal 
points, which are grouped as one signal, dp-in. 

Listing 4.15 LED time-multiplexing circuit with hexadecimal digits 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use  ieee. numeric-std. a l l  ; 
e n t i t y  disp-hex-mux i s  

5 p o r t (  
clk, reset: i n  std-logic; 
h e x 3 ,  hex2, hexl , hexO: i n  std-logic-vector (3 downto 0 )  ; 
dp-in : i n  std-logic-vector (3 downto 0)  ; 
an: o u t  std-logic-vector (3 downto 0)  ; 

10 sseg : o u t  std-logic-vector ( 7  downto 0)  

) ;  
end disp-hex-mux ; 
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a r c h i t e c t u r e  arch of  disp-hex-mux i s  
i s  -- e a c h  7 - s e g  l e d  e n a b l e d  ( 2 ^ 1 8 / 4 ) * 2 . 5  n s  ( 4 0  m s )  

c o n s t a n t  N: integer :=18; 
s i g n a l  q-reg , q-next : unsigned (N-1 downto 0) ; 
s i g n a l  sel : std-logic-vector (1 downto 0) ; 
s i g n a l  hex: std-logic-vector (3 downto 0) ; 

20 s i g n a l  dp: std-logic; 
begin  

-- r e g i s t e r  
p r o c e s s  (clk , reset) 
beg in  

25 i f  reset='l' then 
q-reg <= ( o t h e r s = >  ' 0 ' )  ; 

q-reg <= q-next; 
e l s i f  (clk'event and clk='l') then 

end i f  ; 
30 end p r o c e s s ;  

-- n e x t - s t a t e  l o g i c  for t h e  c o u n t e r  
q-next <= q-reg + 1 ;  

45 

50 

60 

65  

35 -- 2 MSBs o f  c o u n t e r  t o  c o n t r o l  4 - t o - l  m u l t i p l e x i n g  
sel <= std-logic-vector (q-reg"-1 downto N-2)) ; 
p r o c e s s  (sel , hex0 , hexl , hex2, hex3, dp-in) 
beg in  

c a s e  sel i s  
40 when "00" => 

an <= " 1 1 1 0 " ;  
hex <= hex0; 
dp <= dp-in(0); 

an <= " 1 1 0 1 " ;  
hex <= hexl; 
dp <= dp-in(l); 

an <= ' ~ 1 0 1 1 " ;  
hex <= hex2; 
dp <= dp-in(2); 

an <= " 0 1 1 1 " ;  
hex <= hex3; 

when " 0 1 "  => 

when " 1 0 "  => 

when o t h e r s  => 

5s dp <= dp-in(3); 
end c a s e ;  

end p r o c e s s ;  
-_ hex - t o  - 7- s e g in e IZ t I e d d e c o d i n g  
with hex s e l e c t  

sseg(6 downto 0)  <= 
t ' O O O O O O 1  I' when " 0 0 0 0 "  , 
I' 1 0 0 1 1 1 1 (' when " 0 0 0 1 I' , 
" 0 0 1 0 0 1 0 "  when " 0 0 1 0 " ,  
~ ~ 0 0 0 0 ~ 1 0 "  when " 0 0 1 1 " ,  
t ~ l O O ~ ~ O O "  when "OIOO", 
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7u 

75 

'I 0 1 0 0  100 It when I' 0 10 1 'I , 
'' 0 100000 I' when 'I 0 1 10 'I , 
'I 0 0 0 1 1 1 1 'I when It 0 1 1 1 I' , 
r l O O O O O O O 1 t  when t l l O O O 1 t ,  
" 0 0 0 0 1 0 0 "  when " 1 0 0 1 " ,  
" 0 0 0 1 0 0 0 "  when " 1 0 1 0 " ,  --a 
" 1 1 0 0 0 0 0 "  when " 1 0 1 1 " ,  -4 
t t O 1 l O O O 1 l t  when " 1 1 0 0 " ,  --c 
" 1 0 0 0 0 1 0 "  when " 1 1 0 1 " ,  --d 
" 0 1 1 0 0 0 0 "  when "1110", --e 
" 0 1 1 1 0 0 0 "  when o t h e r s ;  --f 

-_ d e c i m a l  p o i n t  
sseg(7) <= dp; 

end arch; 

To verify operation of this circuit, we define the 8-bit switch as two 4-bit unsigned 
numbers, add the two numbers, and show the two numbers and their sum on the four-digit 
seven-segment LED display. The code is shown in Listing 4.16. 

Listing 4.16 

l i b r a r y  ieee; 
u s e  ieee. std-logic-1164. a l l  ; 
u s e  ieee. numeric-std. a l l  ; 
e n t i t y  hex-mux-test i s  

Testing circuit for time multiplexing with hexadecimal digits 

5 p o r t (  
clk: i n  std-logic; 
sw: i n  std-logic-vector ( 7  downto 0)  ; 
an: o u t  std-logic-vector (3 downto 0 )  ; 
sseg : o u t  std-logic-vector (7 downto 0 )  

10 ) ; 
end hex-mux-test; 

a r c h i t e c t u r e  arch of hex-mux-test i s  
s i g n a l  a ,  b: unsigned(7 downto 0 ) ;  

15 s i g n a l  sum: std-logic-vector (7 downto 0)  ; 
b e g i n  

disp-unit : e n t i t y  work. disp-hex-mux 
p o r t  map( 

clk=>clk, reset=>'O', 
20 hex3=>sum(7 downto 4), hex2=>sum(3 downto 0) , 

hexl=>sw(7 downto 4), hexO=>sw(3 downto 0 1 ,  
dp-in=>"lOll" , an=>an, sseg=>sseg) ; 

a <= " 0 0 0 0 "  & unsigned(sw(3 downto 0 ) ) ;  
b <= "0000" & unsigned(sw(7 downto 4)); 

2 5  sum <= std-logic-vector(a + b); 
end arch; 

Simulation consideration Many sequential circuit examples in the book operate at a 
relatively slow rate, as does the enable pulse of the LED time-multiplexing circuit. This 
can be done by generating a single-clock enable tick from a counter. An 18-bit counter is 
used in this circuit: 

c o n s t a n t  N :  integer : =18;  
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s i g n a l  q-reg , q-next : unsigned ( N - 1  downto 0 )  ; 

q-next (= g-reg + 1 ;  
. . .  

Because of the counter's size, simulating this type of circuit consumes a significant amount 
of computation time (i.e., 218 clock cycles for one iteration). Since our main interest is in 
the multiplexing part of the code, most simulation time is wasted. It is more efficient to use 
a smaller counter in simulation. We can do this by modifying the constant statement 

c o n s t a n t  N :  integer : = 4 ;  

when constructing the testbench. This requires only 2* clock cycles for one iteration and 
allows us to better exercise and observe the key operations. 

Instead of using a constant statement and modifying code between simulation and syn- 
thesis, an alternative is to define a generic for the relevant parameter. During instantiation, 
we can assign different values for simulation and synthesis. 

4.5.2 Stopwatch 

We consider the design of a stopwatch in this subsection. The watch displays the time in 
three decimal digits, and counts from 00.0 to 99.9 seconds and wraps around. It contains 
a synchronous clear signal, clr, which returns the count to 00.0, and an enable signal, 
go, which enables and suspends the counting. This design is basically a BCD (binary- 
coded decimal) counter, which counts in BCD format. In this format, a decimal number is 
represented by a sequence of 4-bit BCD digits. For example, 13910 is represented as "0001 
001 1 1001" and the next number in sequence is 14O1o, which is represented as "0001 0100 
0000". 

Since the S3 board has a 50-MHz clock, we first need a mod-5,000,000 counter that 
generates a one-clock-cycle tick every 0.1 second. The tick is then used to enable counting 
of the three-digit BCD counter. 

Design I Our first design of the BCD counter uses a cascading structure of three decade 
(i.e., mod-10) counters, representing counts of 0.1, 1, and 10 seconds, respectively. The 
decade counter has an enable signal and generates a one-clock-cycle tick when it reaches 9. 
We can use these signals to "hook" the three counters. For example, the 10-second counter 
is enabled only when the enable tick of the mod-5,000,000 counter is asserted and both the 
0.1- and I-second counters are 9. The code is shown in Listing 4.17. 

Cascading description for a stopwatch Listing 4.17 

l i b r a r y  ieee; 
use  ieee . std-logic-1164. a l l  ; 
use  ieee. numeric-std. a l l  ; 
e n t i t y  stop-watch i s  

z p o r t (  
c l k :  in std-logic; 
g o ,  clr: i n  std-logic; 
d2, d l ,  do: out  std-logic-vector (3 downto 0)  

) ;  
10 end stop-watch; 

a r c h i t e c t u r e  cascade-arch of  stop-watch i s  
c o n s t a n t  DVSR: integer : =5000000;  
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s i g n a l  ms-reg , ms-next : unsigned (22 d o w n t o  0 )  ; 

s i g n a l  d2-next , dl-next , do-next : unsigned (3 d o w n t o  0)  ; 
s i g n a l  dl-en , d2_en, dO-en: std-logic; 
s i g n a l  ms-tick , do-tick, dl-tick: std-logic ; 

15 s i g n a l  d2_reg, dl-reg , do-reg : unsigned (3 d o w n t o  0)  ; 

b e g i n  
20 

40 

60 

__ r e g i s t e r  
p r o c e s s  (clk) 
b e g i n  

i f  (clk ’ event a n d  clk= ’ 1 ’ ) t h e n  
ms-reg <= ms-next; 
d2-reg <= d2-next; 
dl-reg <= dl-next; 
do-reg <= do-next; 

e n d  i f ;  
e n d  p r o c e s s ;  

__ n e x t - s t a t e  l o g i c  
__ 0 . 1  s e e  t i c k  g e n e r a t o r  : mod-5000000 
ms-next <= 

( o t h e r s = > ’ O ’ )  when clr=’l’ or  

ms-reg + 1 when go=’l’ e l s e  
ms-reg ; 

(ms-reg=DVSR a n d  go=’l’) e l s e  

ms-tick <= ’1’ when ms-reg=DVSR e l s e  ’ 0 ’ ;  
__ 0 . 1  s e e  c o u n t e r  
d0-en <= ’1’ when ms-tick=’l’ e l s e  ’ 0 ’ ;  
do-next <= 

“ 0 0 0 0 ”  when (clr=’l ’ )  o r  (dO-en=’l’ a n d  dO_reg=9) e l s e  
do-reg + 1 when dO-en=’l’ e l s e  
do-reg ; 

do-tick <= ’1’ when dO_reg=9 e l s e  ’ 0 ’ ;  
__ I s e e  c o u n t e r  
dl-en <= ’ 1 ’  when ms-tick=’l’ a n d  dO-tick=’l’ e l s e  
dl-next <= 

“ 0 0 0 0 ”  when (clr=’l’) o r  (dl-en=’l’ a n d  dl_reg=9 
dl-reg + 1 when dl-en=’l’ e l s e  
dl-reg ; 

dl-tick <= ’1’ when dl_reg=9 e l s e  ’ 0 ’ ;  
_- I 0  s e e  c o u n t e r  
d2-en <= 

0 ’ ;  

e l s e  

’1’ when ms-tick=’l’ a n d  dO-tick=’l’ a n d  dl-tick=’l’ e l s e  
’0’; 

“ 0 0 0 0 ”  when (clr=’l’) o r  (d2_en=’l’ a n d  d2_reg=9) e l s e  
d2-reg + 1 when d2_en=’l’ e l s e  
d2-reg ; 

d2-next <= 

__ o u t p u t  l o g i c  
dO <= std-logic-vector (dO-reg) ; 
dl <= std-logic-vector(dl-reg); 
d2 <= std-logic-vector(d2-reg); 

end cascade-arch; 
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Note that all registers are controlled by the same clock signal. This example illustrates 
how to use a one-clock-cycle enable tick to maintain synchronicity. An inferior approach 
is to use the output of the lower counter as the clock signal for the next stage. Although it 
may appear to be simpler, it violates the synchronous design principle and is a very poor 
practice. 

Design /I An alternative for the three-digit BCD counter is to describe the entire structure 
in a nested if statement. The nested conditions indicate that the counter reaches .9,9.9, and 
99.9 seconds. The code is shown in Listing 4.18. 

Listing 4.18 Nested if-statement description for a stopwatch 

a r c h i t e c t u r e  if-arch of  stop-watch i s  
c o n s t a n t  DVSR: integer : = 5 0 0 0 0 0 0 ;  
s i g n a l  ms-reg , ms-next : unsigned (22 downto 0)  ; 
s i g n a l  d2_reg, dl-reg , dO-reg: unsigned (3 downto 0 )  ; 

s i g n a l  ms-tick: std-logic; 

-_ r e g i s t e r  
p r o c e s s  (clk) 

5 s i g n a l  dz-next, dl-next , do-next : unsigned(3 downto 0)  ; 

beg in  

1 0  beg in  
i f  (clk event and clk= ’ 1 ’ then 

ms-reg <= ms-next; 
d2-reg <= d2-next; 
dl-reg <= dl-next; 
do-reg <= do-next; 

end i f  ; 
end p r o c e s s ;  

I 5  

25 

30 

40 

_- n e x t  - s t a  t e  l o g i c  

ms-next <= 
20 -- 0 . 1  s e c  t i c k  g e n e r a t o r :  mod-5000000  

( o t h e r s = >  ’0 ’ )  when clr=’l’ or 

ms-reg + 1 when go=’l’ e l s e  
ms-reg ; 

(ms-reg=DVSR and go= ’ 1 ’ )  e l s e  

ms-tick <= ’ 1 ’  when ms-reg=DVSR e l s e  ’ 0 ’ ;  
-- 3 -  d i g i t  i n c r e m e n t o r  
p r o c e s s  (do-reg , dl-reg ,d2_reg ,ms-tick, clr) 
beg in  

-- d e f a u l t  
do-next <= do-reg; 
dl-next <= dl-reg; 
d2-next <= d2-reg; 
i f  clr= ’ 1 ’ then 

do-next <= ”0000”; 
dl-next <= ”0000”; 
d2-next <= ”0000”; 

e l s i f  ms-tick=’l ’ then 
i f  (dO_reg/=9) then 

do-next <= do-reg + 1 ;  
e l s e  -- r e a c h  X X 9  

do-next <= “0000“; 
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i f  (dl_reg/=9) then 
dl-next <= dl-reg + 1; 

dl-next <= "0000"; 
i f  (d2_reg/=9) then 

e l s e  -- r e a c h  9 9 9  

end i f  ; 

15 e l s e  -- r e a c h  X 9 9  

d2-next <= d2-reg + 1 ;  

50 d2-next <= "0000"; 

end i f  ; 
end i f ;  

end i f  ; 
5 s  end p r o c e s s ;  

__ o u t p u t  l o g i c  
dO <= std-logic-vector(d0-reg); 
dl <= std-logic-vector(dl-reg); 
d2 <= std-logic-vector (d2-reg) ; 

M) end if -arch; 

Verification circuit To verify operation of the stopwatch, we can combine it with the 
previous hexadecimal LED time-multiplexing circuit to display the output of the watch. 
The code is shown in Listing 4.19. Note that the first digit of the LED is assigned to 0 and 
the go and c l r  signals are mapped to two buttons of the S3 board. 

Listing 4.19 Testing circuit for a stopwatch 

l i b r a r y  ieee; 
use  ieee . std-logic-1164. a l l  ; 
e n t i t y  stop-watch-test i s  

por t  ( 
5 clk: in  std-logic; 

btn: in  std-logic-vector (3 downto 0)  ; 
an: out std-logic-vector (3 downto 0)  ; 
sseg : out  std-logic-vector ( 7  downto 0)  

) ;  
10 end stop-watch-test; 

a r c h i t e c t u r e  arch of  stop-watch-test i s  

beg in  
s i g n a l  d2, dl , dO : std-logic-vector (3 downto 0)  ; 

1 5  disp-unit : e n t i t y  work. disp-hex-mux 
port  map( 

clk=>clk, reset=>'O', 
hex3=>"0000" , hex2=>d2, 
hexl=>dl , hexO=>dO, 
dp-in=>" 1 1 0 1 " ,  an=>an, sseg=>sseg) ; 20 

watch-unit : e n t i t y  work. stop-watch(cascade-arch) 
port  map( 

clk=>clk, go=>btn(l) , clr=>btn(O), 
2 s  d2 =>d2, dl=>dl, dO=>dO ) ;  

end arch; 
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FIFO buffer 

from FIFO 
data written 
into FIFO 

data read 

Figure 4.10 Conceptual diagram of a FIFO buffer. 

4.5.3 FIFO buffer 

A FIFO (first-in-first-out) buffer is an “elastic” storage between two subsystems, as shown 
in the conceptual diagram of Figure 4.10. It has two control signals, w r  and rd, for write 
and read operations. When w r  is asserted, the input data is written into the buffer. The 
read operation is somewhat misleading. The head of the FIFO buffer is normally always 
available and thus can be read at any time. The rd signal actually acts like a “remove” 
signal. When it is asserted, the first item (i.e., head) of the FIFO buffer is removed and the 
next item becomes available. 

FIFO buffer is a critical component in many applications and the optimized implemen- 
tation can be quite complex. In this subsection, we introduce a simple, genuine circular- 
queue-based design. More efficient, device-specific implementation can be found in the 
Xilinx literature. 

Circular-queue-based implementation One way to implement a FIFO buffer is to 
add a control circuit to a register file. The registers in the register file are arranged as a 
circular queue with two pointers. The write pointer points to the head of the queue, and the 
readpointer points to the tail of the queue. The pointer advances one position for each write 
or read operation. The operation of an eight-word circular queue is shown in Figure 4.11. 

A FIFO buffer usually contains two status signals, full and empty, to indicate that the 
FIFO is full (i.e., cannot be written) and empty (i.e., cannot be read), respectively. One of 
the two conditions occurs when the read pointer is equal to the write pointer, as shown in 
Figure 4.11(a), (f),  and (i). The most difficult design task of the controller is to derive a 
mechanism to distinguish the two conditions. One scheme is to use two FFs to keep track 
of the empty and full statuses. The FFs are set to ’ 1 ’ and ’0’ during system initialization 
and then modified in each clock cycle according to the values of the wr and rd signals. The 
code is shown in Listing 4.20. 

Listing 4.20 FIFO buffer 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
e n t i t y  fifo i s  

s g e n e r i c (  
B: natural:=8; -- number of  b i t s  
W: natural:=4 -- number o f  a d d r e s s  b i t s  

) ;  
p o r t  ( 

10 clk, reset: i n  std-logic; 
rd, wr: i n  std-logic; 
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Figure 4.11 FIFO buffer based on a circular queue. 
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w-data: i n  std-logic-vector ( B - 1  d o w n t o  0)  ; 
empty, full : o u t  std-logic; 
r-data: o u t  std-logic-vector ( B - 1  d o w n t o  0)  

I5  ; 
e n d  fifo: 

a r c h i t e c t u r e  arch of  fifo i s  
t y p e  reg-file-type i s  a r r a y  (2**W-1 d o w n t o  0)  of  

20 std-logic-vector ( B - 1  d o w n t o  0)  ; 
s i g n a l  array-reg : reg-f ile-type ; 
s i g n a l  w-ptr-reg , w-ptr-next , w-ptr-succ : 

s i g n a l  r-ptr-reg , r-ptr-next , r-ptr-succ: 

s i g n a l  full-reg , empty-reg , full-next , empty-next : 
std-logic; 

s i g n a l  wr-op: std-logic-vector (1 d o w n t o  0 )  ; 
s i g n a l  wr-en : std-logic ; 

std-logic-vector (W-1 d o w n t o  0 )  ; 

25 std-logic-vector ( W - 1  d o w n t o  0)  ; 

30 b e g i n  
__ 

__ r e g i s t e r  f i l e  
__ 

40 

p r o c e s s  (clk, reset) 
3s b e g i n  

i f  (reset=’l ’ )  t h e n  

e l s i f  (clk’event a n d  clk=’l’) t h e n  
array-reg <= ( o t h e r s = > (  o t h e r s = >  ’ 0 ’ ) )  ; 

i f  wr-en=’l’ t h e n  
array_reg(to-integer(unsigned(w-ptr-reg))) 

<= w-data; 
e n d  i f  ; 

e n d  i f  ; 
e n d  p r o c e s s ;  

4s -- r e a d  p o r t  
r-data <= array_reg(to-integer(unsigned(r-ptr-reg))); 
__ w r i t e  e n a b l e d  o n l y  when  FIFO i s  n o t  f u l l  
wr-en <= wr a n d  ( n o t  full-reg); 

50 -- 
-- f i f o  c o n t r o l  l o g i c  

__ r e g i s t e r  f o r  r e a d  a n d  w r i t e  p o i n t e r s  
p r o c e s s  (clk , reset) 

__ 

55 b e g i n  
i f  (reset=’l’) t h e n  

w-ptr-reg <= ( o t h e r s = > ’ O ’ ) ;  
r-ptr-reg <= ( o t h e r s = > ’ O ’ ) ;  
full-reg <= ’ 0  ’ ; 
empty-reg <= ’ 1 ’ ;  

w-ptr-reg <= w-ptr-next ; 
r-ptr-reg <= r-ptr-next ; 
full-reg <= full-next; 

e l s i f  (clk’event a n d  clk=’l’) t h e n  
60 
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65 empty-reg <= empty-next ; 
end i f  ; 

end p r o c e s s ;  

-- s u c c e s s i v e  p o i n t e r  v a l u e s  
70 w-ptr-succ <= std-logic-vector (unsigned(w_ptr-reg)+l) ; 

r-ptr-succ <= std-logic-vector(unsigned(r-ptr-reg)+l); 

80 

85 

90 

95 

IW 

-- n e x t - s t a t e  logic f o r  r e a d  a n d  w r i t e  p o i n t e r s  
wr-op <= wr k r d ;  
p r o c e s s  (w-ptr-reg, w-ptr-succ ,r-ptr-reg ,r-ptr-succ ,wr-op, 

beg in  

75 

empty-reg , full-reg) 

w-ptr-next <= w-ptr-reg; 
r-ptr-next <= r-ptr-reg; 
full-next <= full-reg; 
empty-next <= empty-reg ; 
c a s e  wr-op i s  

when " 0 0 "  => -- n o  o p  
when "01" = >  -- r e a d  

i f  (empty-reg /= '1') then -- n o t  e m p t y  
r-ptr-next <= r-ptr-succ; 
full-next <= ' 0 ' ;  
i f  (r-ptr-succ=w-ptr-reg) then 

end i f  ; 
empty-next <='l'; 

end i f  ; 

i f  (full-reg / =  ' 1 ' )  then -- n o t  f u l l  
when "10" = >  -- w r i t e  

w-ptr-next <= w-ptr-succ; 
empty-next <= ' 0 ' ;  
i f  (w-ptr-succ=r-ptr-reg) then 

end i f  ; 
full-next <='1'; 

end i f  ; 

w-ptr-next <= w-ptr-succ ; 
r-ptr-next <= r-ptr-succ ; 

when o t h e r s  = >  -- w r i t e / r e a d ;  

end c a s e ;  
end p r o c e s s ;  

full <= full-reg; 
empty <= empty-reg; 

105 -- o u t p u t  

end arch; 

The code is divided into a register file and a FIFO controller. The controller consists of 
two pointers and two status FFs. Its next-state logic examines the wr and rd signals and takes 
actions accordingly. For example, let us consider the 'I 10" case, which implies that only a 
write operation occurs. The status FF is checked first to ensure that the buffer is not full. 
If this condition is met, we advance the write pointer by one position and clear the empty 
status FF Storing one extra word to the buffer may make it full. This happens if the new 
write pointer "catches" the read pointer, which is expressed by the w-ptr-succ=r-ptr-reg 
expression. 
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Verification circuit The verification circuit examines the operation of a 24-by-3 FIFO 
buffer. We use three switches to generate the input data and use two buttons for the w r  
and rd signals. The 3-bit readout and the f u l l  and empty status signals are displayed 
in five discrete LEDs. Because of bounces of the mechanical contact, a debouncing cir- 
cuit is needed to generate a clean, one-clock-cycle tick. The debouncing module, named 
debounce, is discussed in Section 5.9 but for now can be treated as a predesigned mod- 
ule. The original button inputs are b tn(0)  and b t n  (I), and the debounced signals are 
db-btn(0) and db-btn( l ) .  The code is shown in Listing 4.21. 

Listing 4.21 Testing circuit for a FIFO buffer 

l i b r a r y  i e e e ;  
use i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
e n t i t y  f i f o - t e s t  i s  

p o r t  ( 
c l k ,  r e s e t :  i n  s t d - l o g i c ;  
b t n :  s t d - l o g i c - v e c t o r  (1 downto 0 )  ; 
sw:  s t d - l o g i c - v e c t o r  ( 2  downto 0 )  ; 
l e d :  out s t d - l o g i c - v e c t o r  ( 7  downto 0) 

1 ;  
1 0  end f i f  o - t e s t  ; 

a r c h i t e c t u r e  a r c h  o f  f i f o - t e s t  i s  

beg in  
s i g n a l  d b - b t n :  s t d - l o g i c - v e c t o r  (1 downto  0) ; 

15 -- d e b o u n c i n g  c i r c u i t  f o r  b t n ( 0 )  
b t n - d b - u n i t 0  : e n t i t y  work .  debounce  ( f s r n d - a r c h )  

p o r t  m a p ( c l k = > c l k ,  r e s e t = > r e s e t  , s w = > b t n ( O ) ,  
d b - l e v e l = > o p e n  , d b - t i c k = > d b - b t n  ( 0 ) )  ; 

-- d e b o u n c i n g  c i r c u i t  f o r  b t n ( l )  
zo b t n - d b - u n i t 1  : e n t i t y  work.debounce(fsrnd-arch) 

p o r t  m a p ( c l k = > c l k ,  r e s e t = > r e s e t  , s w = > b t n ( l ) ,  
d b - l e v e l = > o p e n  , d b - t i c k = > d b - b t n  (1)) ; 

-_ i n s t a n t i a t e  a 2 ^ 2 - b y - 3  f i f o  
f i f o - u n i t :  e n t i t y  w o r k . f i f o ( a r c h )  

25 g e n e r i c  map(B=>3 ,  W=>2) 
p o r t  m a p ( c l k = > c l k ,  r e s e t = > r e s e t  , 

r d = > d b - b t n  (0 )  , w r = > d b - b t n  (1) , 
w-data=>sw , r - d a t a = > l e d  ( 2  downto  0) , 
f u l l = > l e d ( 7 ) ,  e rnp ty=>led  ( 6 ) )  ; 

30 -- d i s a b l e  unused  l e d s  
l e d ( 5  downto  3 ) < = ( o t h e r s = > ’ O ’ ) ;  

end a r c h ;  

4.6 BIBLIOGRAPHIC NOTES 

The bibliographic information for this chapter is similar to that for Chapter 3. 
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Figure 4.12 Pattern for Experiment 4.7.3. 

4.7 SUGGESTED EXPERIMENTS 

4.7.1 Programmable square wave generator 

A programmable square wave generator is a circuit that can generate a square wave with 
variable on (i.e,, logic ’ 1 ’) and off (i.e,, logic ’0’) intervals. The durations of the intervals are 
specified by two 4-bit control signals, m and n, which are interpreted as unsigned integers. 
The on and off intervals are m*100 ns and n*100 ns, respectively (recall that the period of 
the S 3  onboard oscillator is 20 ns). Design a programmable square wave generator circuit. 
The circuit should be completely synchronous. We need a logic analyzer or oscilloscope 
to verify its operation. 

4.7.2 PWM and LED dimmer 

The duty cycle of a square wave is defined as the percentage of the on interval (i.e., logic 
’ 1 ’) in a period. A PWM (pulse width modulation) circuit can generate an output with 
variable duty cycles. For a PWM with 4-bit resolution, a 4-bit control signal, w, specifies 
the duty cycle. The w signal is interpreted as an unsigned integer and the duty cycle is 5.  

1. Design a PWM circuit with 4-bit resolution and verify its operation using a logic 
analyzer or oscilloscope. 

2. Modify the LED time-multiplexing circuit to include the PWM circuit for the an 
signal. The PWM circuit specifies the percentage of time that the LED display is 
on. We can control the perceived brightness by changing the duty cycle. Verify the 
circuit’s operation by observing 1 bit of an on a logic analyzer or oscilloscope. 

3. Replace the LED time-multiplexing circuit of Listing 4.19 with the new design and 
use the lower 4 bits of the 8-bit switch to control the duty cycle. Verify operation of 
the circuit. It may be necessary to go to a dark area to see the effect of dimming. 

4.7.3 Rotating square circuit 

In a seven-segment LED display, a square pattern can be created by enabling the a, b, f, 
and g segments or the c, d, e, and g segments. We want to design a circuit that circulates 
the square patterns in the four-digit seven-segment LED display. The clockwise circulating 
pattern is shown in Figure 4.12. The circuit should have an input, en, which enables or 
pauses the circulation, and an input, cw, which specifies the direction (i.e., clockwise or 
counterclockwise) of the circulation. 

Design the circuit and verify its operation on the prototyping board. Make sure that the 
circulation rate is slow enough for visual inspection. 
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Figure 4.13 Pattern for Experiment 4.7.4. 

4.7.4 Heartbeat circuit 

We want to create a “heartbeat” for the prototyping board. It repeats the simple pattern in 
the four-digit seven-segment display, as shown in Figure 4.13, at a rate of 72 Hz. Design 
the circuit and verify its operation on the prototyping board. 

4.7.5 Rotating LED banner circuit 

The prototyping board has a four-digit seven-segment LED display, and thus only four 
symbols can be displayed at a time. We can show more information if the data is ro- 
tated and moved continuously. For example, assume that the message is 10 digits (i.e., 
“0123456789”). The display can show the message as “0123”, “1234”, “2345”, . . ., “6789”, 
“7890”, . . ., “0123”. The circuit should have an input, en, which enables or pauses the 
rotation, and an input, d i r ,  which specifies the direction (i.e., rotate left or right). 

Design the circuit and verify its operation on the prototyping board. Make sure that the 
rotation rate is slow enough for visual inspection. 

4.7.6 Enhanced stopwatch 

Modify the stopwatch with the following extensions: 

0 Add an additional signal, up, to control the direction of counting. The stopwatch 
counts up when the up signal is asserted and counts down otherwise. 

0 Add a minute digit to the display. The LED display format should be like M . SS . D, 
where D represents 0.1 second and its range is between 0 and 9, SS represents seconds 
and its range is between 00 and 59, and M represents minutes and its range is between 0 
and 9. 

Design the new stopwatch and verify its operation with a testing circuit. 

4.7.7 Stack 

A stack is a last-in-first-out buffer in which the last stored data is retrieved first. Storing a 
data word to a stack is known as a push operation, and retrieving a data word from a stack 
is known as apop operation. The I/O signals of a stack are similar to those of a FIFO buffer 
except that we generally use the push and pop signals in place of the w r  and rd  signals. 
Design a stack using a register file and verify its operation with a testing circuit similar to 
the one in Listing 4.21. 




