
CHAPTER 2

OVERVIEW OF FPGA AND EDA
SOFTWARE

2.1 INTRODUCTION

Developing a large FPGA-based system is an involved process that consists of many com-
plex transformations and optimization algorithms. Software tools are needed to automate
some of the tasks. We use the Web version of the Xilinx ISE package for synthesis and
implementation, and use the starter version of Mentor Graphics ModelSim XE III package
for simulation. In this chapter, we give a brief overview of the FPGA device and the S3
prototyping board, and provide short tutorials for the two software packages to “jump-start”
the learning process.

2.2 FPGA

2.2.1 Overview of a general FPGA device

AJield programmable gate array (FPGA) is a logic device that contains a two-dimensional
array of generic logic cells and programmable switches. The conceptual structure of an
FPGA device is shown in Figure 2.1. A logic cell can be configured (i.e., programmed)
to perform a simple function, and a programmable switch can be customized to provide
interconnections among the logic cells. A custom design can be implemented by specifying
the function of each logic cell and selectively setting the connection of each programmable
switch. Once the design and synthesis is completed, we can use a simple adaptor cable to
download the desired logic cell and switch configuration to the FPGA device and obtain the

FPGA ProtoQping bj VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

11

12 OVERVIEW OF FPGA AND EDA SOFTWARE

S programmable switch

Figure 2.1 Conceptual structure of an FPGA device.

a b c y

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

(a) Conceptual diagram (b) Example table

Figure 2.2 Three-input LUT-based logic cell

custom circuit. Since this process can be done "in the field" rather than "in a fabrication
facility (fab)," the device is known asjeldprograrnrnable.

LUT-based logic cell A logic cell usually contains a small configurable combinational
circuit with a D-type flip-flop (D FF). The most common method to implement a configurable
combinational circuit is a look-up table (LUT). An n-input LUT can be considered as a
small 2"-by-1 memory. By properly writing the memory content, we can use the LUT
to implement any n-input combinational function. The conceptual diagram of a three-
input LUT-based logic cell is shown in Figure 2.2(a). An example of three-input LUT
implementation of a @ b c is shown in Figure 2.2(b). Note that the output of the LUT

OVERVIEW OF THE DIGILENT s3 BOARD 13

can be used directly or stored to the D FF. The latter can be used to implement sequential
circuits.

Macro cell Most FPGA devices also embed certain macro cells or macro blocks. These
are designed and fabricated at the transistor level, and their functionalities complement the
general logic cells. Commonly used macro cells include memory blocks, combinational
multipliers, clock management circuits, and I/O interface circuits. Advanced FPGA devices
may even contain one or more prefabricated processor cores.

2.2.2 Overview of the Xilinx Spartan-3 devices

This book uses Xilinx Spartan-3 family FPGA devices. Based on the ratio between the num-
ber of logic cells and the I/O counts, the family is further divided into several subfamilies.
Our discussion applies to all the subfamilies.

Logic cell, slice, and CL5 The most basic element of the Spartan-3 device is a logic
cell (LC), which contains a four-input LUT and a D FF, similar to that in Figure 2.2.
In addition, a logic cell contains a carry circuit, which is used to implement arithmetic
functions, and a multiplexing circuit, which is used to implement wide multiplexers. The
LUT can also be configured as a 16-by-1 static random access memory (SRAM) or a 16-bit
shift register.

To increase flexibility and improve performance, eight logic cells are combined together
with a special internal routing structure. In Xilinx terms, two logic cells are grouped to
form a slice, and four slices are grouped to form a conjgurable logic block (CLB).

Macro cell The Spartan-3 device contains four types of macro blocks: combinational
multiplier, block RAM, digital clock manager (DCM), and input/output block (IOB). The
combinational multiplier accepts two 18-bit numbers as inputs and calculates the product.
The block RAM is an 18K-bit synchronous SRAM that can be arranged in various types
of configurations. A DCM uses a digital-delayed loop to reduce clock skew and to control
the frequency and phase shift of a clock signal. An IOB controls the flow of data between
the device’s I/O pins and the internal logic. It can be configured to support a wide variety
of IiO signaling standards.

Devices in the Spartan-3 subfamily Althopugh Spartan-3 FPGA devices have sim-
ilar types of logic cells and macro cells, their densities differ. Each subfamily contains an
array of devices of various densities. The numbers of LCs, block RAMS, multipliers, and
DCMs of the devices from the Spartan-3 subfamily are summarized in Table 2.1.

2.3 OVERVIEW OF THE DlGlLENT S3 BOARD

The Digilent S3 board is based on a Spartan-3 device (usually an XC3S200) and has an
array of built-in peripherals. The simplified layouts of the board are shown in Figure 2.3(a)
and (b). The main components and connectors are as follows:

1. Xilinx Spartan-3 XC3S200 FPGA device (XC3S2OOFT256)
2. 2M-bit Xilinx XCF02S platform flash configuration PROM
3. Jumper to select the configuration source
4. Two 256K-by-16 asynchronous SRAM devices (ISSI IS61LV25616AL-lOT).

14 OVERVIEW OF FPGA AND EDA SOFTWARE

(a) Top view

(b) Bottom view

Figure 2.3
reserved.)

Layout of an S3 board. (Courtesy of Xilinx, Inc. 0 Xilinx, Inc. 1994-2007. All rights

DEVELOPMENT FLOW 15

Table 2.1 Devices in the Spartan-3 family

Device Number of Number of
LCS block RAMS

x c 3 s 5 0
x c 3 s 200
xc3s400
xc3s1000
xc3s1500
xc3s2000
xc3s4000
xc3s5000

1,728
4,320
8,064
17,280
29,952
46,080
62,208
74,880

4
12
16
24
32
40
96
104

Block
RAM bits

72K
216K
288K
432K
576K
720K

1,728K
1,872K

Number of
multipliers

Number of
DCMs

4
12
16
24
32
40
96
104

5. VGA display port
6. RS-232 serial port
7. RS-232 transceiver/voltage-level convertor
8. Second RS-232 transmit and receive channel
9. PSI2 mouselkeyboard port

10. Four-digit seven-segment LED display
11. Eight slide switches
12. Eight discrete LED outputs
13. Four momentary-contact pushbutton switches
14. 50-MHz crystal oscillator clock source
15. Socket for an auxiliary crystal oscillator clock source
16. Jumper to select an FPGA configuration mode
17. Pushbutton switch to force FPGA reconfiguration
18. LED to indicate whether the FPGA is successfully configured
19. 40-pin expansion connector 1 (labeled B1)
20. 40-pin expansion connector 2 (labeled A2)
21. 40-pin expansion connector 3 (labeled A l)
22. JTAG connector for Digilent download cable.
23. Digilent low-cost download cable (included in the S3 kit but not shown in Figure 2.3)
24. JTAG port (to be used with the Xilinx Parallel Cable IV and MultiPRO Desktop Tool,

25. Power connector for an unregulated 5-V power supply (included in the S3 kit)
26. Power-on LED indicator
27. 3.3-V voltage regulator
28. 2.5-V voltage regulator
29. 1.2-V voltage regulator
30. Selector for PS2 port voltage supply (3.3 or 5 V)

which are not included in the S3 kit)

2.4 DEVELOPMENT FLOW

The simplified development flow of an FPGA-based system is shown in Figure 2.4. To
facilitate further reading, we follow the terms used in the Xilinx documentation. The
left portion of the flow is the refinement and programming process, in which a system is
transformed from an abstract textual HDL description to a device cell-level configuration

16 OVERVIEW OF FPGA AND EDA SOFTWARE

/-/ input file pLq

constraint goa
0

testbench /7
I I

synthesis

0
simulation

r - - - - - + + I
I I functional 1

I simulation I

programming
L - - - - l

Q

FPGA
chip

Figure 2.4 Development flow.

and then downloaded to the FPGA device. The right portion is the validation process, which
checks whether the system meets the functional specification and performance goals. The
major steps in the flow are:

1. Design the system and derive the HDL file(s). We may need to add a separate
constraint file to specify certain implementation constraints.

2. Develop the testbench in HDL and perform RTL simulation. The RTL term reflects
the fact that the HDL code is done at the register transfer level.

3. Perform synthesis and implementation. The synthesis process is generally known as
logic s.ynthesis, in which the software transforms the HDL constructs to generic gate-
level components, such as simple logic gates and FFs. The implementation process
consists of three smaller processes: translate, map, and place and route. The translate
process merges multiple design files to a single netlist. The map process, which
is generally known as technology mapping, maps the generic gates in the netlist to
FPGAs logic cells and IOBs. The place and route process, which is generally known
as placement and routing, derives the physical layout inside the FPGA chip. It places
the cells in physical locations and determines the routes to connect various signals. In
the Xilinx flow, static timing analysis, which determines various timing parameters,
such as maximal propagation delay and maximal clock frequency, is performed at
the end of the implementation process.

4. Generate and download the programming file. In this process, a configuration file is
generated according to the final netlist. This file is downloaded to an FPGA device
serially to configure the logic cells and switches. The physical circuit can be verified
accordingly.

OVERVIEW OF THE XILINX ISE PROJECT NAVIGATOR 17

The optional functional simulation can be performed after synthesis, and the optional
timing sirnulation can be performed after implementation. Functional simulation uses a
synthesized netlist to replace the RTL description and checks the correctness of the synthesis
process. Timing simulation uses the final netlist, along with detailed timing data, to perform
simulation. Because of the complexity of the netlist, functional and timing simulation may
require a significant amount of time. If we follow good design and coding practices, the HDL
code will be synthesized and implemented correctly. We only need to use RTL simulation
to check the correctness of the HDL code and use static timing analysis to examine the
relevant timing information. Both functional and timing simulations can be omitted from
the development flow.

2.5 OVERVIEW OF THE XlLlNX ISE PROJECT NAVIGATOR

Xilinx ISE (integrated software environment) controls all aspects of the development flow.
Project Navigator is a graphical interface for users to access software tools and relevant files
associated with the project. We use it to launch all development tasks except ModelSim
simulation. The discussion in this section and the tutorial in the next section are based on
ISE WebPack version 8.2.

The default ISE window is shown in Figure 2.5. It is divided into four subwindows:
0 Sources window (top left): hierarchically displays the files included in the project
0 Processes window (middle left): displays available processes for the source file cur-

0 Transcript window (bottom): displays status messages, errors, and warnings
0 Workplace window (top right): contains multiple document windows (such as HDL

Each subwindow may be resized, moved, docked, or undocked. The default layout can be
restored by selecting View + Restore. Note that a subwindow may contain multiple pages.
The tabs at the bottom are used to select the desired page.

rently selected

code, report, schematic, and so on) for viewing and editing

Sources window The sources window is used mainly to display files associated with the
current project. A typical source window, which corresponds to the design of Listing 2.2,
is shown in Figure 2.6. The top drop-down list, labeled Sources for:, specifies the current
design view. The synthesis/implementation view should be selected since we use ISE
only for synthesis and implementation,

There are three tabs at the bottom, labeled Sources, Snapshots, and Libraries. The
Sources tab displays the project name, the FPGA device specified, and user documents
and design files. The modules are displayed according to the internal design hierarchy. In
Figure 2.6, the eq2 and eql entities reflect the hierarchy of Listing 2.2. The eq2 module
also includes the eq-s3. ucf file, which specifies the constraints of the design. We can open
a file in the workplace window by double-clicking the corresponding module. A top-level
module icon can be placed next to a module, as in the eq2 module, to invoke synthesis and
implementation for this particular module.

The Snapshots tab displays project’s “snapshots,” which are copies of previously stored
project files. The Libraries tab shows all libraries associated with the project.

Processes window The processes window displays the processes available. The dis-
play is context sensitive and the available processes are based on source type selected in
the sources window. For example, the eq2 module, which is set as the top-level module,

18 OVERVIEW OF FPGA AND EDA SOFTWARE

Figure 2.5 Typical ISE window.

SHORT TUTORIAL ON ISE PROJECT NAVIGATOR 19

Figure 2.6 Typical source window.

is selected in Figure 2.6. The available processes are displayed in the processes window,
as shown in Figure 2.7, Some processes may also contain several subprocesses. We can
initiate a process by clicking on the corresponding icon. ISE incorporates the “auto make”
technology, which automatically runs the processes necessary to get to the desired step.
For example, when we initiate the Generate Programming File process, ISE automatically
invokes the Synthesize and Implement Design processes since file generation is dependent
on the implementation result, which, in turn, is dependent on the synthesis result.

Transcript window The transcript window is used to display the progress of a process
and relevant messages. The Console page displays errors, warnings, and information mes-
sages. An error is signified by a red X mark next to the message and a warning is signified by
a yellow ! mark. The Warnings and Errors pages display only warning and error messages.

Workplace window The workplace window is for users to view and edit various types
of files. We use it to perform two main tasks. The first task is to view and edit the HDL
and constraint files. The default editor is the ZSE Text Editor, which is a simple text editor
with features to assist creation of the HDL code. The second task is to check the design
summary and various reports.

2.6 SHORT TUTORIAL ON ISE PROJECT NAVIGATOR

Xilinx ISE consists of an array of software tools, but detailed discussion of their use is
beyond the scope of this book. We present a short tutorial in this section to illustrate the
basic development process. There are four major steps:

1. Create the design project and HDL codes.
2. Create a testbench and perform RTL simulation.
3. Add a constraint file and synthesize and implement the code.
4. Generate and download the configuration file to an FPGA device.

These steps follow the general development flow discussed in Section 2.4.
We use the 2-bit comparator discussed in Chapter 1 in the tutorial. The codes are repeated

in Listings 2.1 and 2.2.

20 OVERVIEW OF FPGA AND EDA SOFTWARE

Figure 2.7 Typical processes window.

Listing 2.1 Gate-level implementation of a 1 -bit comparator

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y e q l i s

p o r t (
5 i 0 , i l : i n s t d - l o g i c ;

e q : o u t s t d - l o g i c
1 ;

end e q l ;

1 0 a r c h i t e c t u r e s o p - a r c h of e q l i s
s i g n a l PO, p l : s t d - l o g i c ;

__ sum of t"o p r o d u c t t e r m s
e q <= P O or p l ;

i s -- p r o d u c t t e r m s
p0 <= (n o t i 0) and (n o t i l) ;
p l <= i0 and i l ;

b e g i n

end s o p - a r c h ;

Listing 2.2

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y e q 2 i s

Structural description of a 2-bit comparator

SHORT TUTORIAL ON ISE PROJECT NAVIGATOR 21

p o r t (
5 a , b : i n s t d - l o g i c - v e c t o r (1 d o w n t o 0) ;

a e q b : o u t s t d - l o g i c
) ;

end e q 2 ;

1 0 a r c h i t e c t u r e s t r u c - a r c h of e q 2 i s
s i g n a l e O , e l : s t d - l o g i c ;

-- i n s t a n t i a t e two I - b i t c o m p a r a t o r s
e q - b i t 0 - u n i t : e n t i t y w o r k . e q l (s o p - a r c h)

e q - b i t l - u n i t : e n t i t y work. e q l (s o p - a r c h)

-- a and b a r e e q u a l if i n d i v i d u a l b i t s a r e e q u a l
a e q b <= eO a n d e l ;

b e g i n

I S p o r t m a p (i O = > a (O) , i l = > b (O) , e q = > e O) ;

p o r t m a p (i O = > a (l) , i l = > b (l) , e q = > e l) ;

20 e n d s t r u c - a r c h ;

2.6.1 Create the design project and HDL codes

There are three tasks in this step:
0 Create a project.
0 Add or create HDL files.
0 Check the HDL syntax.

Create a project An ISE project contains basic information of a design, which includes
the source files and a target device. A new project can be created as follows:

1. Select Start + All Programs + Xilinx ISE + Project Navigator (or wherever ISE resides)
to launch the ISE project navigator.

2. In Project Navigator, select File + New Project. The New Project Wizard - Create
New project dialog appears. Enter the project name as eq2 and the location, and
verify that HDL is selected in the Top-level Source Type field. Click Next.

3. The New Project Wizard - Device Properties dialog appears. We need to enter the
desired target device in this dialog. This information can be found in FPGA board
manual or by checking the marking on the top of the FPGA chip. For a typical S3
board, select the following:

0 Product Category: All
0 Family: Spartan3
0 Device: XC3S200
0 Package: FT256
0 Speed: -4

0 Synthesis Tool: XST (VHDL/Verilog)

We also need to verify that the Xilinx XST software is selected for synthesis:

4. Click Next a few times to go through the remaining dialogs and then click Finish to

After a project is created, we can create or add the relevant HDL files and a constraint file.

Create a new HDL file If a file does not exist, we must create a new source file. The
procedure to create a new HDL file is:

complete the creation.

22 OVERVIEW OF FPGA AND EDA SOFTWARE

1. Select Project + New Source. The New Source Wizard - Select Source Type dialog
appears. Select VHDL Module and type the file name, eq2. Click Next.

2. The next dialog appears. This dialog allows us to enter port names. These names are
then later embedded in the HDL code. Enter the 1/0 port information according to
Listing 2.2. Click Next.

3. Click Finish and a new HDL text editor window appears in the workplace window.
The software automatically generates the HDL skeleton, which includes a comment
header, library clauses, an entity declaration, and an empty architecture body.

4. By default, ISE version 8.2 generates the following library clauses:

use 1EEE.STD-LOGIC-ARITH.ALL;
use IEEE. STD-LOGIC-UNSIGNED .ALL

The two libraries are not IEEE standard and should be replaced with

use ieee. numeric-std. a l l ;

This issue is explained in Section 3.2.2.
5. Use the editor to enter the HDL code in Listing 2.2 and save the file.
6. Repeat the process to create another file for the code in Listing 2.1.

Add existing files If a file already exists, it can be added to the project as follows:
1. Select Project t Add Source. A dialog window appears.
2. Go to the desired directory and select the desired files. Click Open and a new dialog

3. Click OK to complete the addition. These files now appear in the sources window of
appears.

the project navigator.

Check the code syntax After completing a new HDL file, we need to check the syntax
of the code:

1. Select the desired file in the source window.
2. In the processes window, click the + icon next to Synthesize to expand the process

hierarchy.
3. Double-click the Check Syntax process.

The bottom transcript displays the progress of the process and reports errors and warnings,
which are started with a red X and yellow ! marks. Double-clicking the message leads
to the offending line in the file. We can correct the problem, save the file, and repeat the
syntax checking process until all syntax errors are eliminated.

2.6.2 Create a testbench and perform the RTL simulation

The testbench functions as a virtual lab bench. It consists of the HDL module to be tested
and a code segment to generate the stimulus. The RTL simulation verifies operation of the
HDL module in the host computer. ISE contains a built-in ISE simulator and can launch
the ModelSim simulator manufactured by Mentor Graphics Corporation. Since the latter
is more robust and versatile, we use it in the book. Although ModelSim can be invoked
from ISE Project Navigator, we treat it as an individual software tool and illustrate its use
in Section 2.1.

2.6.3 Add a constraint file and synthesize and implement the code

There are three tasks in this step:

SHORT TUTORIAL ON ISE PROJECT NAVIGATOR 23

0 Add a constraint file.
0 Perform synthesis and implementation.
0 Check the design summary.

Add a constraint file Constraints are certain conditions imposed on the synthesis
and implementation processes. For our purposes, the main type of constraint is the pin
assignment of a top-level I/O port and the minimal clock rate. During the implementation
process, an IiO signal of the top-level module must be mapped to a physical pin of the
FPGA device. Since the peripherals' I/O signals are already permanently connected to
the designated FPGA's pins on the prototyping board, we must ensure that the signals are
mapped to the corresponding pins. The other type of constraint is about timing, which
specifies the minimal clock frequency to facilitate the oscillator of the board.

The constraint information is stored in a text file with an extension of .ucf (for the user
constraint file). In the eq2 circuit, we can connect the a and b ports to four switches and
the aeqb port to an LED to verify the physical operation of the circuit. For the S3 board,
the corresponding pins are F12, G12, H14, H13, and K12. The constraint file becomes

4 s l i d e s w i t c h e s
NET " a < O > " LOC = "F12" ; # s w i t c h 0
NET " a < l > " LOC = " G 1 2 " ; # s w i t c h 1
NET " b < O > " LOC = "H14" ; # s w i t c h 2
NET " b < l > " LOC = "H13" ; # s w i t c h 3
l e d
NET " a e q b " L O C = "K12" ; # l e d 0

Note that the # sign is used for a comment and the text after it is ignored. This file must be
added to the design in the sources window.

There are several ISE tools to specify and generate the constraint file. Since all of our
experiments are done in the same prototyping board, the constraints (i.e., pin assignment
and clock frequency) remain the same. A constraint template file that includes all connected
I/O peripheral signals of the S3 board is provided in the Appendix. One easy method to
create a constraint file is simply to copy and edit the template file according to the I/O port
names of the current design. The procedure to create the .ucf file for the eq2 circuit is:

1. Copy the template constraint file and rename it eq2~3.ucf .
2. Follow the procedure in Section 2.6.1 to add the new constraint file to the eq2 module

in the sources window.
3. Select the constraint file.
4. In the processes window, click the + icon next to User Constraints to expand the

5. Double-click the Edit Constraints (Text) process to launch the ISE text editor.
6. Rename the I/O names as needed and then delete the unused pin assignments.
7. Save the file.
The default option of ISE version 8.2 only allows the pin assignments of the existing

top-level I/O ports. If unused pin assignments are not deleted from the ucf template, error
messages will be generated. We can override the default option as follows:

process hierarchy.

1. Select the top-level HDL file.
2. Right-click the implement Design process in the processes window and then select

3. In the dialog window, check the Allow Unmatched LOC Constraints option and then
Properties ... from the menu. A dialog window appears.

click OK.

24 OVERVIEW OF FPGA AND EDA SOFTWARE

After this option is turned on, we can use the same ucf template for all designs as long as
the same IiO port names are kept in the top-level module, and we don’t need to edit the ucf
file each time.

Perform synthesis and implementation Invoking the synthesis and implementation
procedure is very simple:

1. Select the module to be synthesized and make sure that it is designated as the top-level

2. Double-click the Implement Design process in the processes window.
3. Although the syntax is checked earlier, the code may contain constructs that cannot

be synthesized or may lead to poor implementation (such as a combinational loop).
The error and warning messages are displayed in the console tab of the transcript
window.

module (with a green square next to the module icon).

4. Correct the problems and repeat the simulation and synthesis processes if needed.

Check the design summary As the project progresses, a report is generated in each
process. These reports and key statistics are summarized in a design summary window. We
can check the size of the resulting circuit (in terms of the numbers of slices, FFs, and LUTs)
and, for a sequential circuit, check whether the clock rate meets the timing constraints.
The summary can be invoked by double-clicking the View Design Summary process in the
processes window. The summary for the eq2 circuit is shown in Figure 2.8. We can check
the use of slices, LUTs, and so on, in the Device Utilization Summary portion. A more
detailed report can be invoked by clicking the corresponding link.

2.6.4 Generate and download the configuration file to an FPGA device

The last step is to generate the configuration file and download the file to the FPGA device.
There are three tasks in this step:

0 Connect the download cable.
0 Generate the configuration file.
0 Download the configuration file.

The S3 kit comes with a parallel-port JTAG download cable, and the following discussion
is based on this cable. The procedures for other cables are similar and detailed instructions
can be found in their manuals.

Connect the download cable The procedure to prepare the board is as follows:
1. Make sure that the PROM and the Mode jumpers (labeled 3 and 16 in Figure 2.3) are

2. Connect the power cable.
3. Connect one end of the download cable to the parallel port of a PC and connect the

in their default setting (as the board is shipped).

other end to the JTAG port (labeled 22 in Figure 2.3) on the S3 board.

Generate the configuration file Generating a configuration file is very straightfor-
ward:

1. Make sure that the top-level module is selected in the source window.
2. Click Generate Programming File in the processes window.

After this process is completed, a configuration file, eq2.bit, is generated.

SHORT TUTORIAL ON ISE PROJECT NAVIGATOR 25

Figure 2.8 Design summary.

26 OVERVIEW OF FPGA AND EDA SOFTWARE

Figure 2.9 iMPACT welcome dialog.

Download the configuration file Downloading the configuration file to an FPGA
device is done by a software tool known as iMPACT, which can be invoked from ISE
Project Navigator. The procedure is

1. In the processes window, click the + sign to expand the Generate Programming File
hierarchy.

2. Double-click the Configure Device (IMPACT) process. The Welcome to iMPACT dia-
log appears, as shown in Figure 2.9. Check Configure devices using Boundary-Scan
(JTAG) and verify that Automatically connect to a cable and identify Boundary-Scan
chain is selected in the drop-down list. Click Finish.

3. If a message indicating that two devices are found is displayed, click OK to continue.
4. The main iMPACT window, along with the Assign New Configuration File dialog,

appears, as shown in Figure 2.10. The devices connected to the JTAG chain on the
board should be detected and displayed.

5. Select the eq2.bit file and click Open to assign this configuration file to the xc3s200
device in the JTAG chain.

6. If a warning message appears, ignore it and click OK.
7. Select Bypass to skip the other device.
8. Right-click on the xc3s200 device image, and select Program The Programming

9. The Program Succeeded message appears when the downloading process is com-

Now the FPGA device is configured and we can test the circuit with the switches and observe
the output LED.

Properties dialog opens. Click OK to program the device.

pleted.

SHORT TUTORIAL ON THE MODELSIM HDL SIMULATOR 27

Figure 2.10 iMPACT main window.

An alternative way to configure the FPGA is to download the configuration file to a
PROM and load the configuration file from the PROM. More information may be found in
the sources cited in the Bibliographic section.

2.7 SHORT TUTORIAL ON THE MODELSIM HDL SIMULATOR

The ModelSim software is an HDL simulator manufactured by Mentor Graphics Corpo-
ration and can run independently without ISE. The discussion in this section is based on
ModelSim XE I11 Starter version 6.0d.

The default ModelSim window is shown in Figure 2.1 1. It is divided into three subwin-
dows: Transcript window (bottom), Workspace window, and multiple document interface
(MDI) window. The Workspace window displays information on the current process. The
bottom tab is used to select the desired process page, which can be Project, Library, Sim,
and so on. The Transcript window keeps track of command history and messages. It can
also be used as a command-line interface to enter ModelSim commands. The MDI window
is an area to display HDL text, waveform, and so on. The bottom tab selects the desired
pages.

Each subwindow may be resized, moved, docked, or undocked. Additional windows
may appear for some operations. The default layout can be restored by selecting Window
+ initial Layout.

We present a short tutorial in this section to illustrate the basic simulation process. There
are three steps:

1. Prepare a simulation project.
2 . Compile the HDL codes.
3. Perform a simulation and examine the waveform.

28 OVERVIEW OF FPGA AND EDA SOFTWARE

Figure 2.11 Typical ModelSim window.

We use the 2-bit comparator testbench discussed in Chapter 1 for the tutorial, and the code
is repeated in Listing 2.3. An additional assertion statement,

a s s e r t false
report ” S imu 1 at ion C omp 1 e t e d I’
s e v e r i t y failure;

is added to the end of the process. It generates an “artificial failure” and stops the simulation.

Listing 2.3 Testbench of a 2-bit comparator

l i b r a r y ieee; use ieee. std-logic-1164. a l l ;
e n t i t y eq2-testbench i s
end eq2-testbench;

5 a r c h i t e c t u r e tb-arch of eq2-testbench i s
s i g n a l test-ino, test-in1 : std-logic-vector (1 downto 0) ;
s i g n a l test-out : std-logic ;

-_ i n s t a n t i a t e t h e c i r c u i t u n d e r t e s t
begin

1 0 u ut: e n t i t y work.eq2(struc-arch)
port map(a=>test-inO, b=>test-in1 , aeqb=>test-out) ;

-_ t e s t v e c t o r g e n e r a t o r
p r o c e s s

SHORT TUTORIAL ON THE MODELSIM HOL SIMULATOR 29

20

2s

b e g i n
15 t e s t v e c t o r 1 __

test-in0 <= "00";
test-in1 <= "00";
w a i t f o r 200 ns;
_- t e s t v e c t o r 2
test-in0 <= " 0 1 " ;
test-in1 <= " 0 0 " ;
w a i t f o r 200 ns;

t e s t v e c t o r 3
test-in0 <= " 0 1 " ;

__

30

3s

40

test-in1 <= "11"
w a i t f o r 200 ns;

t e s t v e c t o r 4
test-in0 <= "10"
test-in1 <= "10"
w a i t f o r 200 ns;
__ t e s t v e c t o r 5
test-in0 <= " 1 0 "
test-in1 <= "00"
w a i t f o r 200 ns;

t e s t v e c t o r 6
test-in0 <= "11"
test-in1 <= "11"
w a i t f o r 200 ns;

t e s t v e c t o r 7

__

__

__
test-in0 <= "11";
test-in1 <= "01";
w a i t f o r 200 ns;
__ t e r m i n a t e s i m u l a t i o n
a s s e r t false

r e p or t " S i mu 1 at i on C omp 1 e t e d ''
s e v e r i t y failure;

end p r o c e s s ;
end tb-arch;

Prepare a simulation project A ModelSim simulation project consists of the library
definition and a collection of HDL files. A testbench is an HDL program and can be created
by using the ISE text editor, as discussed in Section 2.6.1. Alternatively, ModelSim also
has a built-in editor. We assume that all HDL files are already constructed. The procedure
to create a project is as follows:

1. Select Start + All Programs + ModelSim XE ill 6.0d + ModelSim (or wherever Mod-
elSim resides) to launch the ModelSim program.

2. Select File + New + Project and the Create Project dialog appears, as shown in
Figure 2.12(a). Enter the project name as eq-testbench, select the project location,
and set Default Library Name to work. Click OK. A blank Project page appears
in the main window and the Add items to the project dialog appears, as shown in
Figure 2.12(b).

3. In the Add items to the project dialog, click Add Existing File and add the necessary
HDL files. Click OK. The project tab appears in the workplace subwindow and
displays the selected files, as shown in Figure 2.13.

30 OVERVIEW OF FPGA AND EDA SOFTWARE

(a) Create P r o j e c t dialog (b) Add items dialog

Figure 2.12 New project dialogs.

Figure 2.13 Project tab of the workplace panel.

SHORT TUTORIAL ON THE MODELSIM HDL SIMULATOR 31

Figure 2.14 Simulate dialog.

Compile the HDL code The compile term here means to convert the HDL code into
ModelSim internal format. In VHDL, the compiling is done on the design unit basis. Each
entity and architecture is considered as one design unit. The procedure is:

1. Highlight the eql file and right-click the mouse. Select Compile + Compile Selected.
Note that the compiling should be started from the modules at the bottom of the design
hierarchy. The progress and messages are displayed in the transcript window.

2 . If the file contains no syntactical error, a check mark shows up. Otherwise, an X
mark shows up. Click the red error line in the transcript window to locate the errors.
Correct the problems, save the file, and recompile the file.

3. Repeat the preceding steps to compile the eq2 file and then the eq-tb file.

Perform a simulation and examine the waveform After compiling the testbench
and corresponding files, we can perform the simulation and examine the resulting waveform.
This corresponds to running the circuit in a virtual lab bench and checking the waveform
in a virtual logic analyzer. The procedure is:

1. Select Simulate + Simulate and the Simulate dialog appears.
2. In the Design tab, find and expand the work library, which is the one defined when

we create the project. All compiled units are displayed, as shown in Figure 2.14.
3. Load eq2-testbench by double-clicking the corresponding icon. The sim tab ap-

pears in the workplace window and the corresponding page displays the structure of
the eq2-testbench module, as shown in Figure 2.15. An object window, which
contains the signals in the selected module, may also appear.

4. Highlight the uut unit and right-click the mouse. Select Add + Add to Wave. This
adds all the signals of the uut unit to the waveform page. The waveform page appears
in the MDI window.

5. If necessary, rearrange the signals order and set them to proper format (decimal, hex,
and so on.).

32 OVERVIEW OF FPGA AND EDA SOFTWARE

Figure 2.15 Sim panel of the workplace panel.

Figure 2.16 Waveform window,

6. Select Simulate t Run. There are several commands to control the simulation:
Restart (restart the simulation), Run (run the simulation one step), Continue run
(resume the run from the interrupt), Run All (run the simulation forever), and Break
(break the simulation). These commands are also shown as icons at the top of the
window.

7 . The waveform window displays the simulated result, shown in Figure 2.16. We can
scroll the window, zoom in, or zoom out to check the correctness of the design.

2.8 BIBLIOGRAPHIC NOTES

Both Xilinx ISE and Mentor Graphics ModelSim are complex software packages, and their
documentation exceeds several thousand pages. Most documentation can be accessed via
the Help menu. ISE has a short 30-page tutorial, ZSE 8.1i Quick Start Tutorial, and a more
comprehensive 170-page tutorial, ZSE In-Depth Tutorial. ModelSim also has a similar
tutorial, ModelSim Tutorial. These tutorials provide an overview on all features of the
software package. Relevant information for the Spartan-3 device can be found in its data
sheets, DS099 Spartan-3 FPGA Family: Complete Data Sheet, which includes the detailed

SUGGESTED EXPERIMENTS 33

Table 2.2 Truth table of a 2-to-4 decoder with enable

input output
e n a(1) a(0) bcode

0 - - 0000
1 0 0 0001
1 0 1 0010
1 1 0 0100
1 1 1 1000

explanation on the logic cells and macro cells. The Design Warrior’s Guide to FPGAs
by Clive Maxfield provides a comprehensive review of FPGA-related issues. The detailed
layout and I/O connectors of the S3 board can be found in Spartan-3 Starter Kit Board User
Guide. Information on other prototyping boards can be found in their manuals.

2.9 SUGGESTED EXPERIMENTS

2.9.1 Gate-level greater-than circuit

The greater-than circuit compares two inputs, a and b, and asserts an output when a is
greater than b. We want to create a 4-bit greater-than circuit from the bottom up and use
only gate-level logical operators. Design the circuit as follows:

1.

2.

3.

4.

5 .

6.

Derive the truth table for a 2-bit greater-than circuit and obtain the logic expression
in the sum-of-products format. Based on the expression, derive the HDL code using
only logical operators.
Derive a testbench for the 2-bit greater-than circuit. Perform a simulation and verify
the correctness of the design.
Use four switches as the inputs and one LED as the output. Synthesize the circuit
and download the configuration file to the prototyping board. Verify its operation.
Use the 2-bit greater-than circuits and 2-bit equality comparators and a minimal
number of “glue gates” to construct a 4-bit greater-than circuit. First draw a block
diagram and then derive the structural HDL code according to the diagram.
Derive a testbench for the 4-bit greater-than circuit. Perform a simulation and verify
the correctness of the design.
Use eight switches as the inputs and one LED as the output. Synthesize the circuit
and download the configuration file to the prototyping board. Verify its operation.

2.9.2 Gate-level binary decoder

An n - t 0 - 2 ~ binary decoder asserts one of 2n bits according to the input combination. The
functional table of a 2-to-4 decoder with an enable signal is shown in Table 2.2. We want to
create several decoders using only gate-level logical operators. The procedure is as follows:

1. Determine the logic expressions for the 2-to-4 decoder with enable and derive the

2. Derive a testbench for the decoder. Perform a simulation and verify the correctness
HDL code using only logical operators.

of the design.

34 OVERVIEW OF FPGA AND EDA SOFTWARE

3. Use two switches as the inputs and four LEDs as the outputs. Synthesize the circuit
and download the configuration file to the prototyping board. Verify its operation.

4. Use the 2-to-4 decoders to derive a 3-to-8 decoder. First draw a block diagram and
then derive the structural HDL code according to the diagram.

5. Derive a testbench for the 3-to-8 decoder. Perform a simulation and verify the cor-
rectness of the design.

6. Use three switches as the inputs and eight LEDs as the outputs. Synthesize the circuit
and download the configuration file to the prototyping board. Verify its operation.

7. Use the 2-to-4 decoders to derive a 4-to-16 decoder. First draw a block diagram and
then derive the structural HDL code according to the diagram.

8. Derive a testbench for the 4-to-16 decoder. Perform a simulation and verify the
correctness of the design.

